Structure of the Hilbert-space of the infinite-dimensional Hubbard model

被引:0
作者
Institut für Physik, Universität Dortmund, 44221 Dortmund, Germany [1 ]
机构
来源
Eur Phys J B | / 4卷 / 569-573期
关键词
D O I
暂无
中图分类号
学科分类号
摘要
An iterative procedure for the explicit construction of the nontrivial subspace of all symmetry-adapted configurations with non-zero weight in the ground-state of the infinity -dimensional Hubbard model is developed on the basis of a symmetrized representation of the transition operators on a sequence of Bethe-Lattices of finite depth. The relationship between these operators and the well-known mapping of the infinity -dimensional Hubbard model onto an effective impurity problem coupled to a (self-consistent) bath on non-interacting electrons is given. As an application we calculate the properties of various Hubbard stars and give estimates for the half-filled Hubbard model with up to 0.1% accuracy.
引用
收藏
相关论文
共 50 条
[31]   ELECTRICAL-CONDUCTIVITY IN THE INFINITE-DIMENSIONAL HUBBARD-MODEL [J].
KHURANA, A .
PHYSICAL REVIEW LETTERS, 1990, 64 (16) :1990-1990
[32]   TRANSPORT-PROPERTIES OF THE INFINITE-DIMENSIONAL HUBBARD-MODEL [J].
PRUSCHKE, T ;
COX, DL ;
JARRELL, M .
EUROPHYSICS LETTERS, 1993, 21 (05) :593-598
[33]   TRANSPORT-PROPERTIES OF THE INFINITE-DIMENSIONAL HUBBARD-MODEL [J].
PRUSCHKE, T ;
JARRELL, M .
PHYSICA B, 1994, 199 :217-218
[34]   Estimate of the phase transition line in the infinite-dimensional Hubbard model [J].
Aaram J. Kim ;
M. Y. Choi ;
Gun Sang Jeon .
Journal of the Korean Physical Society, 2014, 64 :268-276
[35]   Estimate of the phase transition line in the infinite-dimensional Hubbard model [J].
Kim, Aaram J. ;
Choi, M. Y. ;
Jeon, Gun Sang .
JOURNAL OF THE KOREAN PHYSICAL SOCIETY, 2014, 64 (02) :268-276
[36]   Controllability in infinite-dimensional Hilbert spaces [J].
Muresan, M .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2002, 48 (03) :475-479
[37]   INFINITE-DIMENSIONAL BICOMPLEX HILBERT SPACES [J].
Lavoie, Raphael Gervais ;
Marchildon, Louis ;
Rochon, Dominic .
ANNALS OF FUNCTIONAL ANALYSIS, 2010, 1 (02) :75-91
[38]   NOTES ON INFINITE DETERMINANTS OF HILBERT-SPACE OPERATORS [J].
SIMON, B .
ADVANCES IN MATHEMATICS, 1977, 24 (03) :244-273
[39]   EVERY INFINITE-DIMENSIONAL HILBERT SPACE IS DIFFEOMORPHIC WITH ITS UNIT SPHERE [J].
BESSAGA, C .
BULLETIN DE L ACADEMIE POLONAISE DES SCIENCES-SERIE DES SCIENCES MATHEMATIQUES ASTRONOMIQUES ET PHYSIQUES, 1966, 14 (01) :27-&
[40]   HIGHER-RANK NUMERICAL RANGE IN INFINITE-DIMENSIONAL HILBERT SPACE [J].
Martinez-Avendano, Ruben A. .
OPERATORS AND MATRICES, 2008, 2 (02) :249-264