Finite element Galerkin method for the 'good' boussinesq equation

被引:0
|
作者
Pani, Amiya K. [1 ]
Saranga, Haritha [1 ]
机构
[1] Indian Inst of Technology, Mumbai, India
来源
Nonlinear Analysis, Theory, Methods and Applications | 1997年 / 29卷 / 08期
关键词
D O I
暂无
中图分类号
学科分类号
摘要
引用
收藏
页码:937 / 956
相关论文
共 50 条
  • [21] Weak Galerkin mixed finite element method for heat equation
    Zhou, Chenguang
    Zou, Yongkui
    Chai, Shimin
    Zhang, Qian
    Zhu, Hongze
    APPLIED NUMERICAL MATHEMATICS, 2018, 123 : 180 - 199
  • [22] The discontinuous Galerkin finite element method for fractional cable equation
    Zheng, Yunying
    Zhao, Zhengang
    APPLIED NUMERICAL MATHEMATICS, 2017, 115 : 32 - 41
  • [23] A new weak Galerkin finite element method for the Helmholtz equation
    Mu, Lin
    Wang, Junping
    Ye, Xiu
    IMA JOURNAL OF NUMERICAL ANALYSIS, 2015, 35 (03) : 1228 - 1255
  • [24] A HYBRIDIZED WEAK GALERKIN FINITE ELEMENT METHOD FOR THE BIHARMONIC EQUATION
    Wang, Chunmei
    Wang, Junping
    INTERNATIONAL JOURNAL OF NUMERICAL ANALYSIS AND MODELING, 2016, 13 (02) : 302 - +
  • [25] Galerkin finite element method for damped nonlinear Schrodinger equation
    Wang, Lingli
    Li, Meng
    APPLIED NUMERICAL MATHEMATICS, 2022, 178 : 216 - 247
  • [26] A Weak Galerkin Mixed Finite Element Method for AcousticWave Equation
    Zhang, Xi
    Feng, Minfu
    ADVANCES IN APPLIED MATHEMATICS AND MECHANICS, 2022, 14 (04) : 936 - 959
  • [27] Weak Galerkin finite element method for the linear Schrodinger equation
    Aziz, Dalal Ismael
    Hussein, Ahmed J.
    JOURNAL OF INTERDISCIPLINARY MATHEMATICS, 2023, 26 (05) : 919 - 923
  • [28] A MODIFIED WEAK GALERKIN FINITE ELEMENT METHOD FOR SOBOLEV EQUATION
    Gao, Funzheng
    Wang, Xiaoshen
    JOURNAL OF COMPUTATIONAL MATHEMATICS, 2015, 33 (03) : 307 - 322
  • [29] Mixed Discontinuous Galerkin Finite Element Method for the Biharmonic Equation
    Gudi, Thirupathi
    Nataraj, Neela
    Pani, Amiya K.
    JOURNAL OF SCIENTIFIC COMPUTING, 2008, 37 (02) : 139 - 161
  • [30] A Weak Galerkin Harmonic Finite Element Method for Laplace Equation
    Ahmed Al-Taweel
    Yinlin Dong
    Saqib Hussain
    Xiaoshen Wang
    Communications on Applied Mathematics and Computation, 2021, 3 : 527 - 543