Fuzzy shortest path problem

被引:0
|
作者
Okada, Shinkoh [1 ]
Gen, Mitsuo [1 ]
机构
[1] Ashikaga Junior Coll, Ashikaga, Japan
来源
Computers and Industrial Engineering | 1994年 / 27卷 / 1-4期
关键词
8;
D O I
暂无
中图分类号
学科分类号
摘要
引用
收藏
页码:465 / 468
相关论文
共 50 条
  • [22] A New Expected Value Model for the Fuzzy Shortest Path Problem
    Abu Nayeem, Sk Md
    PROCEEDINGS OF THE SECOND INTERNATIONAL CONFERENCE ON SOFT COMPUTING FOR PROBLEM SOLVING (SOCPROS 2012), 2014, 236 : 209 - 215
  • [23] New models for shortest path problem with fuzzy arc lengths
    Ji, Xiaoyu
    Iwamura, Kakuzo
    Shao, Zhen
    APPLIED MATHEMATICAL MODELLING, 2007, 31 (02) : 259 - 269
  • [24] Solving the fuzzy shortest path problem on networks by a new algorithm
    Ebrahimnejad, Sadollah
    Tavakoli-Moghaddam, Reza
    FS'09: PROCEEDINGS OF THE 10TH WSEAS INTERNATIONAL CONFERENCE ON FUZZY SYSTEMS, 2009, : 28 - +
  • [25] A New Algorithm to Shortest Path Problem with Fuzzy Arc Lengths
    Khorsandi, Armita
    Liu, Xiao-Chu
    Cao, Bing-Yuan
    FUZZY INFORMATION AND ENGINEERING AND DECISION, 2018, 646 : 244 - 249
  • [26] Competitive analysis for the on-line fuzzy shortest path problem
    Ma, WM
    Chen, GQ
    PROCEEDINGS OF 2005 INTERNATIONAL CONFERENCE ON MACHINE LEARNING AND CYBERNETICS, VOLS 1-9, 2005, : 862 - 867
  • [27] Shortest Path Problem Under Triangular Fuzzy Neutrosophic Information
    Broumi, Said
    Bakali, Assia
    Talea, Mohamed
    Smarandache, Florentin
    PROCEEDINGS OF 2016 10TH INTERNATIONAL CONFERENCE ON SOFTWARE, KNOWLEDGE, INFORMATION MANAGEMENT & APPLICATIONS (SKIMA), 2016, : 169 - 174
  • [28] The Shortest Path Problem on a Fuzzy Time-Dependent Network
    Huang, Wei
    Ding, Lixin
    IEEE TRANSACTIONS ON COMMUNICATIONS, 2012, 60 (11) : 3376 - 3385
  • [29] An algorithm for the shortest path problem on a network with fuzzy parameters applied to a tourist problem
    Hernandes, Fabio
    Lamata, Maria Teresa
    Verdegay, Jose Luis
    Yamakami, Akebo
    GRANULAR COMPUTING: AT THE JUNCTION OF ROUGH SETS AND FUZZY SETS, 2008, 224 : 307 - +
  • [30] The fuzzy shortest path length and the corresponding shortest path in a network
    Chuang, TN
    Kung, JY
    COMPUTERS & OPERATIONS RESEARCH, 2005, 32 (06) : 1409 - 1428