Alternative bi-Hamiltonian structures for WDVV equations of associativity

被引:0
|
作者
Kalayci, J.
Nutku, Y.
机构
来源
Journal of Physics A: Mathematical and General | / 31卷 / 02期
关键词
D O I
暂无
中图分类号
学科分类号
摘要
引用
收藏
相关论文
共 50 条
  • [41] Hierarchy of coupled Korteweg-de Vries equations and their generalized bi-Hamiltonian structures
    Li, Chunxia
    Zhengzhou Daxue Xuebao/Journal of Zhengzhou University, 2002, 34 (02):
  • [42] The bi-Hamiltonian structure of the perturbation equations of the KdV hierarchy
    Ma, WX
    Fuchssteiner, B
    PHYSICS LETTERS A, 1996, 213 (1-2) : 49 - 55
  • [43] BI-HAMILTONIAN STRUCTURE OF A PAIR OF COUPLED KDV EQUATIONS
    NUTKU, Y
    OGUZ, O
    NUOVO CIMENTO DELLA SOCIETA ITALIANA DI FISICA B-GENERAL PHYSICS RELATIVITY ASTRONOMY AND MATHEMATICAL PHYSICS AND METHODS, 1990, 105 (12): : 1381 - 1383
  • [44] The WDVV Associativity Equations as a High-Frequency Limit
    Pavlov, Maxim, V
    Stoilov, Nikola M.
    JOURNAL OF NONLINEAR SCIENCE, 2018, 28 (05) : 1843 - 1864
  • [45] Bi-Hamiltonian ordinary differential equations with matrix variables
    A. V. Odesskii
    V. N. Rubtsov
    V. V. Sokolov
    Theoretical and Mathematical Physics, 2012, 171 : 442 - 447
  • [46] Bi-Hamiltonian ordinary differential equations with matrix variables
    Odesskii, A. V.
    Rubtsov, V. N.
    Sokolov, V. V.
    THEORETICAL AND MATHEMATICAL PHYSICS, 2012, 171 (01) : 442 - 447
  • [47] On the bi-hamiltonian structures for the Goryachev-Chaplygin top
    Kostko, A. L.
    Tsiganov, A. V.
    REGULAR & CHAOTIC DYNAMICS, 2008, 13 (01): : 38 - 45
  • [48] Modified constrained KP hierarchy and bi-Hamiltonian structures
    Hongmin Li
    Analysis and Mathematical Physics, 2021, 11
  • [49] The WDVV Associativity Equations as a High-Frequency Limit
    Maxim V. Pavlov
    Nikola M. Stoilov
    Journal of Nonlinear Science, 2018, 28 : 1843 - 1864
  • [50] On the bi-hamiltonian structures for the Goryachev-Chaplygin top
    A. L. Kostko
    A. V. Tsiganov
    Regular and Chaotic Dynamics, 2008, 13 : 38 - 45