Nonlinear filtering: Interacting particle resolution

被引:0
|
作者
机构
来源
Comptes Rendus L'Acad Sci Ser I Math | / 6卷 / 653期
关键词
D O I
暂无
中图分类号
学科分类号
摘要
引用
收藏
相关论文
共 50 条
  • [31] Change detection for nonlinear systems; A particle filtering approach
    Azimi-Sadjadi, B
    Krishnaprasad, PS
    PROCEEDINGS OF THE 2002 AMERICAN CONTROL CONFERENCE, VOLS 1-6, 2002, 1-6 : 4074 - 4079
  • [32] A particle filtering approach to change detection for nonlinear systems
    Azimi-Sadjadi, B
    Krishnaprasad, PS
    EURASIP JOURNAL ON APPLIED SIGNAL PROCESSING, 2004, 2004 (15) : 2295 - 2305
  • [33] MultiPDF particle filtering in state estimation of nonlinear objects
    Jacek Michalski
    Piotr Kozierski
    Wojciech Giernacki
    Joanna Zietkiewicz
    Marek Retinger
    Nonlinear Dynamics, 2021, 106 : 2165 - 2182
  • [34] Unscented Particle Filtering based on Particle Selection and Weight Optimization for Nonlinear Estimation
    Zhao, Fangfang
    Ge, Shuzhi Sam
    He, Wei
    PROCEEDINGS OF THE 39TH CHINESE CONTROL CONFERENCE, 2020, : 2838 - 2843
  • [35] A particle refinement scheme with hybrid particle interacting technique for multi-resolution SPH
    Liu Hu
    Qiang HongFu
    Chen FuZhen
    Shi Chao
    ENGINEERING ANALYSIS WITH BOUNDARY ELEMENTS, 2020, 118 : 108 - 123
  • [36] Interacting multiple-models, state augmented Particle Filtering for fault diagnostics
    Compare, Michele
    Baraldi, Piero
    Turati, Pietro
    Zio, Enrico
    PROBABILISTIC ENGINEERING MECHANICS, 2015, 40 : 12 - 24
  • [37] Interacting multiple model particle filtering algorithm based on generalized unscented transformation
    Hu, Zhen-Tao
    Pan, Quan
    Yang, Feng
    Tien Tzu Hsueh Pao/Acta Electronica Sinica, 2010, 38 (06): : 1443 - 1448
  • [38] MCMC-based particle filtering for tracking a variable number of interacting targets
    Khan, Z
    Balch, T
    Dellaert, F
    IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2005, 27 (11) : 1805 - 1819
  • [39] Large deviations for interacting particle systems: Applications to non-linear filtering
    Del Moral, P
    Guionnet, A
    STOCHASTIC PROCESSES AND THEIR APPLICATIONS, 1998, 78 (01) : 69 - 95
  • [40] Optimal Transportation Methods in Nonlinear Filtering THE FEEDBACK PARTICLE FILTER
    Taghvaei, Amirhossein
    Mehta, Prashant G.
    IEEE CONTROL SYSTEMS MAGAZINE, 2021, 41 (04): : 34 - 49