Multiplicative noise in domain growth. Stochastic ginzburg-landau equations

被引:0
|
作者
Hernandez-Machado, A.
Ramirez-Piscina, L.
Sancho, J.M.
机构
来源
NATO ASI Series, Series B: Physics | 1993年 / 304卷
关键词
D O I
暂无
中图分类号
学科分类号
摘要
引用
收藏
相关论文
共 50 条
  • [41] Validity of generalized Ginzburg-Landau equations
    Schneider, Guido
    1996, John Wiley & Sons Ltd, Chichester, United Kingdom (19)
  • [42] WELL-POSEDNESS OF FRACTIONAL STOCHASTIC COMPLEX GINZBURG-LANDAU EQUATIONS DRIVEN BY REGULAR ADDITIVE NOISE
    Liu, Aili
    Zou, Yanyan
    Ren, Die
    Shu, Ji
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B, 2023, 28 (11): : 5418 - 5436
  • [43] The validity of generalized Ginzburg-Landau equations
    Schneider, G
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 1996, 19 (09) : 717 - 736
  • [44] Rotating superconductors: Ginzburg-Landau equations
    H. Capellmann
    The European Physical Journal B - Condensed Matter and Complex Systems, 2002, 25 : 25 - 30
  • [45] GENERALIZED NONLOCAL GINZBURG-LANDAU EQUATIONS
    XU, HH
    HU, XX
    TSAI, CH
    COMMUNICATIONS IN THEORETICAL PHYSICS, 1992, 18 (01) : 19 - 26
  • [46] Minimax solutions of the Ginzburg-Landau equations
    Lin F.H.
    Lin T.-C.
    Selecta Mathematica, 1997, 3 (1) : 99 - 113
  • [47] Ginzburg-Landau equations for anisotropic superconductors
    Hofer, E
    Klein, U
    CZECHOSLOVAK JOURNAL OF PHYSICS, 1996, 46 : 1049 - 1050
  • [48] On the onset of superconductivity for the Ginzburg-Landau equations
    Baumann, P.
    Phillips, D.
    Tang, Q.
    Zeitschrift fuer Angewandte Mathematik und Mechanik, ZAMM, Applied Mathematics and Mechanics, 76 (Suppl 2):
  • [49] Limiting vorticities for the Ginzburg-Landau equations
    Sandier, E
    Serfaty, S
    DUKE MATHEMATICAL JOURNAL, 2003, 117 (03) : 403 - 446
  • [50] On the onset of superconductivity for the Ginzburg-Landau equations
    Bauman, P
    Phillips, D
    Tang, Q
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND MECHANIK, 1996, 76 : 277 - 279