Nonlinear Galerkin method and Crank-Nicolson method for viscous incompressible flow

被引:0
|
作者
College of Science, Xi'An Jiaotong University, Xi'an 710049, China [1 ]
机构
来源
J Comput Math | / 2卷 / 139-158期
关键词
D O I
暂无
中图分类号
学科分类号
摘要
引用
收藏
相关论文
共 50 条
  • [21] A Newton Linearized Crank-Nicolson Method for the Nonlinear Space Fractional Sobolev Equation
    Qin, Yifan
    Yang, Xiaocheng
    Ren, Yunzhu
    Xu, Yinghong
    Niazi, Wahidullah
    JOURNAL OF FUNCTION SPACES, 2021, 2021
  • [22] Galerkin finite element schemes with fractional Crank-Nicolson method for the coupled time-fractional nonlinear diffusion system
    Kumar, Dileep
    Chaudhary, Sudhakar
    Kumar, V. V. K. Srinivas
    COMPUTATIONAL & APPLIED MATHEMATICS, 2019, 38 (03):
  • [23] Superconvergence analysis of Crank-Nicolson Galerkin FEMs for a generalized nonlinear Schrodinger equation
    Zhang, Houchao
    Wang, Junjun
    NUMERICAL METHODS FOR PARTIAL DIFFERENTIAL EQUATIONS, 2018, 34 (02) : 799 - 820
  • [24] Analysis of a Crank-Nicolson fast element-free Galerkin method for the nonlinear complex Ginzburg-Landau equation
    Li, Xiaolin
    Cui, Xiyong
    Zhang, Shougui
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2025, 457
  • [25] A Crank-Nicolson Petrov-Galerkin method with quadrature for semi-linear parabolic problems
    Bialecki, B
    Ganesh, M
    Mustapha, K
    NUMERICAL METHODS FOR PARTIAL DIFFERENTIAL EQUATIONS, 2005, 21 (05) : 918 - 937
  • [26] A generalized Crank-Nicolson method for the solution of the subdiffusion equation
    Blasik, Marek
    2018 23RD INTERNATIONAL CONFERENCE ON METHODS & MODELS IN AUTOMATION & ROBOTICS (MMAR), 2018, : 726 - 729
  • [27] Improved Crank-Nicolson method applied to quantum tunnelling
    Rizea, M.
    RECENT PROGRESS IN COMPUTATIONAL SCIENCES AND ENGINEERING, VOLS 7A AND 7B, 2006, 7A-B : 464 - 468
  • [28] ON THE CONVERGENCE OF THE CRANK-NICOLSON METHOD FOR THE LOGARITHMIC SCHRODINGER EQUATION
    Paraschis, Panagiotis
    Zouraris, Georgios E.
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B, 2023, 28 (01): : 245 - 261
  • [29] Crank-Nicolson method for the numerical solution of models of excitability
    Lopez-Marcos, J.C.
    Numerical Methods for Partial Differential Equations, 1994, 10 (03) : 323 - 344
  • [30] An Interval Version of the Crank-Nicolson Method - The First Approach
    Marciniak, Andrzej
    APPLIED PARALLEL AND SCIENTIFIC COMPUTING, PT II, 2012, 7134 : 120 - 126