Fast Hilbert Transformation.

被引:0
|
作者
Roesler, R.
机构
来源
Nachrichtentechnik Elektronik | 1976年 / 26卷 / 02期
关键词
HILBERT TRANSFORMATION;
D O I
暂无
中图分类号
学科分类号
摘要
In order to calculate the minimal phase spectrum from the (logarithmic) amplitude spectrum it is customary to use the Hilbert transformation. For a series consisting of N values, the number of necessary computing operations is proportional to N**2. It is shown that the so called Kolmogorov factorization makes it possible to reduce the number of steps. If, in addition, the Fourier transformation is used, it is possible to obtain the same result with a number of computing operations which is proportional to N log N.
引用
收藏
页码:47 / 48
相关论文
共 44 条
  • [1] A modified Hilbert transformation method for fringe pattern analysis
    Wong, WO
    Chan, MSM
    Chan, KT
    So, RMC
    SECOND INTERNATIONAL CONFERENCE ON EXPERIMENTAL MECHANICS, 2001, 4317 : 424 - 428
  • [2] New procedure for harmonics estimation based on Hilbert transformation
    Predrag Petrović
    Nada Damljanović
    Electrical Engineering, 2017, 99 : 313 - 323
  • [4] New procedure for harmonics estimation based on Hilbert transformation
    Petrovic, Predrag
    Damljanovic, Nada
    ELECTRICAL ENGINEERING, 2017, 99 (01) : 313 - 323
  • [5] Study of the results of Hilbert transformation for some fractional derivatives
    Nazeer, Nazakat
    Akgul, Ali
    Ali, Faeem
    INTERNATIONAL JOURNAL OF MODELLING AND SIMULATION, 2024,
  • [6] Noise suppression system for AM radio using Hilbert transformation
    Ito, Shinya
    Fujimoto, Mitoshi
    Hori, Toshikazu
    Harada, Tomohisa
    Hattori, Yoshiyuki
    IEICE COMMUNICATIONS EXPRESS, 2016, 5 (05): : 142 - 146
  • [7] Noise Suppression System for AM using Quadrature Demodulation and Hilbert Transformation
    Ito, Shinya
    Fujimoto, Mitoshi
    Hori, Toshikazu
    Harada, Tomohisa
    Hattori, Yoshiyuki
    2015 IEEE 4TH ASIA-PACIFIC CONFERENCE ON ANTENNAS AND PROPAGATION (APCAP), 2015, : 333 - 334
  • [8] Identification of nonlinear multi-degree-of freedom structures based on Hilbert transformation
    WU ZhiGang
    YANG Ning
    YANG Chao
    Science China(Physics,Mechanics & Astronomy), 2014, Mechanics & Astronomy)2014 (09) : 1725 - 1736
  • [9] CARBON NANOPARTICLES FOR DIAGNOSTIC OF RANDOM SPECKLE-FIELDS. HILBERT TRANSFORMATION APPLICATION
    Zenkova, C. Yu
    Ivanskyi, D. I.
    Tkachuk, V. M.
    ADVANCED TOPICS IN OPTOELECTRONICS, MICROELECTRONICS AND NANOTECHNOLOGIES X, 2020, 11718
  • [10] Identification of nonlinear multi-degree-of freedom structures based on Hilbert transformation
    Wu ZhiGang
    Yang Ning
    Yang Chao
    SCIENCE CHINA-PHYSICS MECHANICS & ASTRONOMY, 2014, 57 (09) : 1725 - 1736