Eigenvalue and eigenvector determination for damped gyroscopic systems

被引:0
|
作者
Department of Mathematics and Statistics, University of Missouri, Rolla, MO, 65409, United States [1 ]
不详 [2 ]
机构
来源
J Appl Mech Trans ASME | / 3卷 / 710-712期
关键词
D O I
暂无
中图分类号
学科分类号
摘要
引用
收藏
相关论文
共 50 条
  • [1] Eigenvalue and eigenvector determination for damped gyroscopic systems
    Malone, DP
    Cronin, DL
    Randolph, TW
    JOURNAL OF APPLIED MECHANICS-TRANSACTIONS OF THE ASME, 1997, 64 (03): : 710 - 712
  • [2] EIGENVALUE AND EIGENVECTOR DETERMINATION FOR NONCLASSICALLY DAMPED DYNAMIC-SYSTEMS
    CRONIN, DL
    COMPUTERS & STRUCTURES, 1990, 36 (01) : 133 - 138
  • [3] Eigenvalue problem for damped gyroscopic systems
    Tsinghua Univ, Beijing, China
    Int J Mech Sci, 6 (741-750):
  • [4] The eigenvalue problem for damped gyroscopic systems
    Zheng, ZC
    Ren, GX
    Williams, FW
    INTERNATIONAL JOURNAL OF MECHANICAL SCIENCES, 1997, 39 (06) : 741 - 750
  • [5] Quadratic inverse eigenvalue problem for damped gyroscopic systems
    Qian, Jiang
    Cheng, Mingsong
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2014, 255 : 306 - 312
  • [6] An inverse quadratic eigenvalue problem for damped gyroscopic systems
    Yuan, Yongxin
    Zhou, Lei
    Chen, Jinghua
    LINEAR & MULTILINEAR ALGEBRA, 2021, 69 (14): : 2572 - 2585
  • [7] An Inverse Eigenvalue Problem for Damped Gyroscopic Second-Order Systems
    Yuan, Yongxin
    MATHEMATICAL PROBLEMS IN ENGINEERING, 2009, 2009
  • [8] Solutions of a Quadratic Inverse Eigenvalue Problem for Damped Gyroscopic Second-Order Systems
    Zhong, Hong-Xiu
    Chen, Guo-Liang
    Zhang, Xiang-Yun
    JOURNAL OF APPLIED MATHEMATICS, 2014,
  • [9] Modal uncoupling of damped gyroscopic systems
    Sawicki, JT
    Genta, G
    JOURNAL OF SOUND AND VIBRATION, 2001, 244 (03) : 431 - 451
  • [10] Gyroscopic stabilization of indefinite damped systems
    Kliem, W
    Muller, PC
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND MECHANIK, 1997, 77 : S163 - S164