Heisenberg antiferromagnet on an anisotropic triangular lattice: Linear spin-wave theory

被引:0
作者
机构
来源
J Phys Condens Matter | / 14卷 / 2965-2975期
关键词
D O I
暂无
中图分类号
学科分类号
摘要
We consider the effect of quantum spin fluctuations on the ground-state properties of the Heisenberg antiferromagnet on an anisotropic triangular lattice using linear spin-wave (LSW) theory. This model should describe the magnetic properties of the insulating phase of the &kappa-(BEDT-TTF)2X family of superconducting molecular crystals. The ground-state energy, the staggered magnetization, magnon excitation spectra, and spin-wave velocities are computed as functions of the ratio of the antiferromagnetic exchange between the second and first neighbours, J2/J1. We find that near J2/J1 = 0.5, i.e., in the region where the classical spin configuration changes from a Neel-ordered phase to a spiral phase, the staggered magnetization vanishes, suggesting the possibility of a quantum disordered state. In this region, the quantum correction to the magnetization is large but finite. This is in contrast to the case for the frustrated Heisenberg model on a square lattice, for which the quantum correction diverges logarithmically at the transition from the Neel to the collinear phase. For large J2/J1, the model becomes a set of chains with frustrated interchain coupling. For J2gt;4J1, the quantum correction to the magnetization, within LSW theory, becomes comparable to the classical magnetization, suggesting the possibility of a quantum disordered state. We show that, in this regime, the quantum fluctuations are much larger than for a set of weakly coupled chains with non-frustrated interchain coupling.
引用
收藏
相关论文
empty
未找到相关数据