Numerical simulations of light bullets using the full-vector time-dependent nonlinear Maxwell equations

被引:0
|
作者
NASA Ames Research Center, Moffett Field, CA 94035-1000, United States [1 ]
不详 [2 ]
机构
来源
J Opt Soc Am B | / 11卷 / 3253-3260期
关键词
This work was funded by NIH grant R01 CA069544; R01CA176086 and NSFC 81370038; BNSF; 7142012; BNP Z141101001814107; STPBMEC km201410005003; PSFC; 2014M560032; 2015T80030; and BJUT 002000514312015; 2013-RXL04;
D O I
暂无
中图分类号
学科分类号
摘要
39
引用
收藏
相关论文
共 50 条
  • [1] Numerical simulations of light bullets using the full-vector time-dependent nonlinear Maxwell equations
    Goorjian, PM
    Silberberg, Y
    JOURNAL OF THE OPTICAL SOCIETY OF AMERICA B-OPTICAL PHYSICS, 1997, 14 (11) : 3253 - 3260
  • [2] Numerical integration of Maxwell's full-vector equations in nonlinear focusing media
    Bennett, PM
    Aceves, A
    PHYSICA D-NONLINEAR PHENOMENA, 2003, 184 (1-4) : 352 - 375
  • [3] Time-dependent current source identification for numerical simulations of Maxwell's equations
    Benoit, J.
    Chauviere, C.
    Bonnet, P.
    JOURNAL OF COMPUTATIONAL PHYSICS, 2015, 289 : 116 - 128
  • [4] OPTIMAL CONTROL OF THE FULL TIME-DEPENDENT MAXWELL EQUATIONS
    Bommer, Vera
    Yousept, Irwin
    ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE, 2016, 50 (01): : 237 - 261
  • [5] New numerical methods for solving the time-dependent Maxwell equations
    De Raedt, H
    Kole, JS
    Michielsen, KFL
    Figge, MT
    COMPUTATIONAL ACCELERATOR PHYSICS 2002, 2005, 175 : 63 - 72
  • [6] Numerical simulations of time-dependent partial differential equations
    de la Hoz, Francisco
    Vadillo, Fernando
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2016, 295 : 175 - 184
  • [7] Regularity in time of the time-dependent Maxwell equations
    Assous, F
    Ciarlet, P
    COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 1998, 327 (08): : 719 - 724
  • [8] Unified framework for numerical methods to solve the time-dependent Maxwell equations
    De Raedt, H
    Kole, JS
    Michielsen, KFL
    Figge, MT
    COMPUTER PHYSICS COMMUNICATIONS, 2003, 156 (01) : 43 - 61
  • [9] Numerical analysis of a PML model for time-dependent Maxwell's equations
    Huang, Yunqing
    Li, Jichun
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2011, 235 (13) : 3932 - 3942
  • [10] Numerical solution of the time-dependent Maxwell's equations for random dielectric media
    Harshawardhan, W
    Su, Q
    Grobe, R
    PHYSICAL REVIEW E, 2000, 62 (06): : 8705 - 8712