A neural network model for dose-response of foodborne pathogens

被引:0
|
作者
Yang, Simon X. [1 ]
机构
[1] Adv. Robotics Intelligent Syst. Lab., School of Engineering, University of Guelph, Guelph
来源
Applied Soft Computing Journal | 2003年 / 3卷 / 02期
基金
加拿大自然科学与工程研究理事会;
关键词
Dose-response; Foodborne pathogens; Neural network; Quantitative risk assessment;
D O I
10.1016/S1568-4946(03)00013-9
中图分类号
学科分类号
摘要
Foodborne infections are a significant cause of morbidity and mortality in human populations. Risk assessment and public health control measures could be greatly enhanced by establishing an accurate relationship between ingested dose and infection probability, and defining minimum infectious doses. In this paper, a novel neural network model is proposed for dose-response of foodborne pathogens. The proposed model assumes a three-layer structure with a fast back-propagation learning algorithm. The model predictions for four available datasets from the literature are compared using six statistical models: log-normal, log-logistic, simple exponential, flexible exponential, Beta-Poisson and Weibull-Gamma. The methods of least square error, maximum likelihood and correlation coefficient are used for the comparison study that shows the neural network model does better than the statistic models. Predictions of dose-response for multiple types of pathogens and dose-response with different host age and gender using neural network models are discussed with simulations. © 2003 Elsevier B.V. All rights reserved.
引用
收藏
页码:85 / 96
页数:11
相关论文
共 50 条
  • [21] Adaptive Dose-Response Studies
    Brenda Gaydos
    Michael Krams
    Inna Perevozskaya
    Frank Bretz
    Qing Liu
    Paul Gallo
    Don Berry
    Christy Chuang-Steln
    José Pinheiro
    Alun Bedding
    Drug information journal : DIJ / Drug Information Association, 2006, 40 : 451 - 461
  • [22] A Dose of Reality About Dose-Response Relationships
    Redelmeier, Donald A.
    Zipursky, Jonathan S.
    JOURNAL OF GENERAL INTERNAL MEDICINE, 2023, 38 (16) : 3604 - 3609
  • [23] The hormetic dose-response model is more common than the threshold model in toxicology
    Calabrese, EJ
    Baldwin, LA
    TOXICOLOGICAL SCIENCES, 2003, 71 (02) : 246 - 250
  • [24] Bayesian Development of a Dose-Response Model for Aspergillus fumigatus and Invasive Aspergillosis
    Leleu, Christopher
    Menotti, Jean
    Meneceur, Pascale
    Choukri, Firas
    Sulahian, Annie
    Garin, Yves Jean-Francois
    Denis, Jean-Baptiste
    Derouin, Francis
    RISK ANALYSIS, 2013, 33 (08) : 1441 - 1453
  • [25] Dose-Response Model of Rocky Mountain Spotted Fever (RMSF) for Human
    Tamrakar, Sushil B.
    Haas, Charles N.
    RISK ANALYSIS, 2011, 31 (10) : 1610 - 1621
  • [26] Estimating the dose-response function through a generalized linear model approach
    Guardabascio, Barbara
    Ventura, Marco
    STATA JOURNAL, 2014, 14 (01) : 141 - 158
  • [27] Fractional Poisson-A Simple Dose-Response Model for Human Norovirus
    Messner, Michael J.
    Berger, Philip
    Nappier, Sharon P.
    RISK ANALYSIS, 2014, 34 (10) : 1820 - 1829
  • [28] A Latent Pharmacokinetic Time Profile to Model Dose-Response Survival Data
    Jacobs, Tom
    Straetemans, Roel
    Molenberghs, Geert
    Bouwknecht, J. Adriaan
    Bijnens, Luc
    JOURNAL OF BIOPHARMACEUTICAL STATISTICS, 2010, 20 (04) : 759 - 767
  • [29] Alzheimer's disease drugs: An application of the hormetic dose-response model
    Calabrese, Edward J.
    CRITICAL REVIEWS IN TOXICOLOGY, 2008, 38 (05) : 419 - 451
  • [30] Lurasidone Dose Response in Bipolar Depression: A Population Dose-response Analysis
    Chapel, Sunny
    Chiu, Yu-Yuan
    Hsu, Jay
    Cucchiaro, Josephine
    Loebel, Antony
    CLINICAL THERAPEUTICS, 2016, 38 (01) : 4 - 15