ABR flow control in ATM networks based on neural networks
被引:0
作者:
Zhang, W.
论文数: 0引用数: 0
h-index: 0
机构:
Dept. of Automatic Control Eng., South China Univ. of Tech., Guangzhou 510640, ChinaDept. of Automatic Control Eng., South China Univ. of Tech., Guangzhou 510640, China
Zhang, W.
[1
]
Feng, S.
论文数: 0引用数: 0
h-index: 0
机构:
Dept. of Automatic Control Eng., South China Univ. of Tech., Guangzhou 510640, ChinaDept. of Automatic Control Eng., South China Univ. of Tech., Guangzhou 510640, China
Feng, S.
[1
]
Pei, H.
论文数: 0引用数: 0
h-index: 0
机构:
Dept. of Automatic Control Eng., South China Univ. of Tech., Guangzhou 510640, ChinaDept. of Automatic Control Eng., South China Univ. of Tech., Guangzhou 510640, China
Pei, H.
[1
]
Ye, W.
论文数: 0引用数: 0
h-index: 0
机构:
Dept. of Automatic Control Eng., South China Univ. of Tech., Guangzhou 510640, ChinaDept. of Automatic Control Eng., South China Univ. of Tech., Guangzhou 510640, China
Ye, W.
[1
]
机构:
[1] Dept. of Automatic Control Eng., South China Univ. of Tech., Guangzhou 510640, China
来源:
Huanan Ligong Daxue Xuebao/Journal of South China University of Technology (Natural Science)
|
2001年
/
29卷
/
07期
关键词:
D O I:
暂无
中图分类号:
学科分类号:
摘要:
In this paper, we present a novel neural networks approach to ABR flow control in ATM networks and propose a feedback flow control algorithm based on the RBF-ANN model, which is an on-line learning ANN model and can modify the ANN model parameters to adapt the change of source rates and congestion. The results of the simulation suggest that our approach performs better than traditional static feedback control both on resource utilization and cell loss ratio.