Best finite-difference scheme for the Fisher equation

被引:0
|
作者
Mickens, Ronald E. [1 ]
机构
[1] Clark Atlanta Univ, Atlanta, United States
关键词
Convergence of numerical methods - Differential equations - Integration - Mathematical models;
D O I
暂无
中图分类号
学科分类号
摘要
A new class of finite-difference schemes is constructed for the Fisher partial differential equation. These schemes are constructed according to the nonstandard modeling rules formulated by Mickens. They have the property that, in the appropriate limits, the discrete models obtained are either `exact' or `best' finite-difference schemes for corresponding differential equation. Consequently, the elementary numerical instabilities will not occur.
引用
收藏
页码:581 / 585
相关论文
共 50 条
  • [1] Nonstandard finite-difference scheme to approximate the generalized Burgers-Fisher equation
    Namjoo, Mehran
    Zeinadini, Mehdi
    Zibaei, Sadegh
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2018, 41 (17) : 8212 - 8228
  • [2] Exact finite-difference scheme and nonstandard finite-difference scheme for coupled Burgers equation
    Zhang, Lei
    Wang, Lisha
    Ding, Xiaohua
    ADVANCES IN DIFFERENCE EQUATIONS, 2014,
  • [3] Exact finite-difference scheme and nonstandard finite-difference scheme for coupled Burgers equation
    Lei Zhang
    Lisha Wang
    Xiaohua Ding
    Advances in Difference Equations, 2014
  • [4] On a Finite-Difference Scheme for an Hereditary Oscillatory Equation
    Parovik R.I.
    Journal of Mathematical Sciences, 2021, 253 (4) : 547 - 557
  • [5] A stable finite-difference scheme for the Boussinesq equation
    Scalerandi, M
    Giordano, M
    Delsanto, PP
    Condat, CA
    NUOVO CIMENTO DELLA SOCIETA ITALIANA DI FISICA D-CONDENSED MATTER ATOMIC MOLECULAR AND CHEMICAL PHYSICS FLUIDS PLASMAS BIOPHYSICS, 1998, 20 (01): : 1 - 17
  • [6] Hybrid finite-difference scheme for solving the dispersion equation
    Tsai, TL
    Yang, JC
    Huang, LH
    JOURNAL OF HYDRAULIC ENGINEERING-ASCE, 2002, 128 (01): : 78 - 86
  • [7] THE CONVERGENCE OF A FINITE-DIFFERENCE SCHEME FOR A NONLINEAR EVOLUTION EQUATION
    TIKHOMIROVA, EI
    USSR COMPUTATIONAL MATHEMATICS AND MATHEMATICAL PHYSICS, 1986, 26 (03): : 33 - 39
  • [8] A FINITE-DIFFERENCE SCHEME FOR THE HEAT-CONDUCTION EQUATION
    LIVNE, E
    GLASNER, A
    JOURNAL OF COMPUTATIONAL PHYSICS, 1985, 58 (01) : 59 - 66
  • [9] A second-order accurate finite-difference scheme for the classical Fisher-Kolmogorov-Petrovsky-Piscounov equation
    Izadi, Mohammad
    JOURNAL OF INFORMATION & OPTIMIZATION SCIENCES, 2021, 42 (02): : 431 - 448
  • [10] An explicit positivity-preserving finite-difference scheme for the classical Fisher-Kolmogorov-Petrovsky-Piscounov equation
    Macias-Diaz, J. E.
    Puri, A.
    APPLIED MATHEMATICS AND COMPUTATION, 2012, 218 (09) : 5829 - 5837