Numerical relativity in 3+1 dimensions

被引:0
|
作者
Brügmann, B. [1 ]
机构
[1] Max-Planck-Inst. fur G., Am Mühlenberg 1, D-14476 Golm, Germany
来源
Annalen der Physik (Leipzig) | 2000年 / 9卷 / 03期
关键词
Problem solving - Quantum theory - Relativity;
D O I
暂无
中图分类号
学科分类号
摘要
Numerical relativity is finally approaching a state where the evolution of rather general (3+1)-dimensional data set can be computed in order to solve the Einstein equations. Three topics of current interest are reviewed: binary black hole mergers, the evolution of strong gravitational waves, and shift conditions for neuron star binaries.
引用
收藏
页码:227 / 246
相关论文
共 50 条
  • [31] Stabilizing textures in 3+1 dimensions with semilocality
    Perivolaropoulos, L
    PHYSICAL REVIEW D, 2000, 62 (04)
  • [32] Thermodynamics of plasmaballs and plasmarings in 3+1 dimensions
    Bhardwaj, Shanthanu
    Bhattacharya, Jyotirmoy
    JOURNAL OF HIGH ENERGY PHYSICS, 2009, (03):
  • [33] ON THE DIRAC-EQUATION IN 3+1 DIMENSIONS
    ORD, GN
    MCKEON, DGC
    ANNALS OF PHYSICS, 1993, 222 (02) : 244 - 253
  • [34] A quest for the integrable equation in 3+1 dimensions
    Yu Song-Ju
    K. Toda
    T. Fukuyama
    Theoretical and Mathematical Physics, 2000, 122 : 256 - 259
  • [35] Note on the propagation of the constraints in standard 3+1 general relativity
    Frittelli, S
    PHYSICAL REVIEW D, 1997, 55 (10): : 5992 - 5996
  • [36] Numerical study of the Yang-Mills vacuum wave functional in D=3+1 dimensions
    Greensite, Jeff
    Olejnik, Stefan
    PHYSICAL REVIEW D, 2014, 89 (03):
  • [37] RELATIVITY IN 3 DIMENSIONS
    SEN, DK
    CLASSICAL AND QUANTUM GRAVITY, 1995, 12 (02) : 553 - 577
  • [38] SOME APPLICATIONS OF THE 3+1 FORMALISM OF GENERAL-RELATIVITY
    DURRER, R
    STRAUMANN, N
    HELVETICA PHYSICA ACTA, 1988, 61 (08): : 1027 - 1062
  • [39] ON THE HAMILTONIAN APPROACH TO COMMUTATOR ANOMALIES IN (3+1) DIMENSIONS
    MICKELSSON, J
    PHYSICS LETTERS B, 1990, 241 (01) : 70 - 76
  • [40] Liouville-Lifshitz theory in 3+1 dimensions
    Alexandre, J.
    Farakos, K.
    Tsapalis, A.
    PHYSICAL REVIEW D, 2010, 81 (10)