NONCONFORMAL FINITE-ELEMENT METHOD FOR THE STOKES PROBLEM.

被引:0
|
作者
D'yakonov, E.G.
机构
关键词
FLOW OF FLUIDS;
D O I
暂无
中图分类号
学科分类号
摘要
This article investigates efficiency iterative methods for solving sytems of equations of the nonconformal finite-element (projective-net) method for problems of the type represented by the stationary Stokes problem, in which piecewise-linear and piecewise-constant functions on triangles of special triangulations of plane domains are employed. To achieve an accuracy h** gamma ( gamma greater than 0) these methods require O(h**2 vertical ln h vertical ) arithmetic operations for domains made up of rectangles, and O(h** minus **2ln**2h) operations in the general case.
引用
收藏
页码:17 / 24
相关论文
共 50 条
  • [41] PENALTY FINITE ELEMENT METHOD FOR THE FRICTIONLESS ELASTIC CONTACT PROBLEM.
    Luo Jiwei
    Jixie goneheng Xuebao, 1984, 20 (03): : 82 - 86
  • [42] A STABILIZED FINITE ELEMENT METHOD FOR THE STOKES EIGENVALUE PROBLEM
    Yuan, Maoqin
    Huang, Pengzhan
    MATHEMATICAL REPORTS, 2024, 26 (01): : 1 - 16
  • [43] An optimal adaptive finite element method for the Stokes problem
    Kondratyuk, Yaroslav
    Stevenson, Rob
    SIAM JOURNAL ON NUMERICAL ANALYSIS, 2008, 46 (02) : 747 - 775
  • [44] A new mixed finite element method for the Stokes problem
    Farhloul, M
    Zine, AM
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2002, 276 (01) : 329 - 342
  • [45] A cut finite element method for a Stokes interface problem
    Hansbo, Peter
    Larson, Mats G.
    Zahedi, Sara
    APPLIED NUMERICAL MATHEMATICS, 2014, 85 : 90 - 114
  • [46] Analysis of a finite volume element method for the Stokes problem
    Alfio Quarteroni
    Ricardo Ruiz-Baier
    Numerische Mathematik, 2011, 118 : 737 - 764
  • [47] A mixed finite element method for the generalized Stokes problem
    Bustinza, R
    Gatica, GN
    González, M
    INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN FLUIDS, 2005, 49 (08) : 877 - 903
  • [48] Superconvergence of the finite element method for the Stokes eigenvalue problem
    Sheng, Ying
    Zhang, Tie
    Pan, Zixing
    CHAOS SOLITONS & FRACTALS, 2021, 144
  • [49] Analysis of a finite volume element method for the Stokes problem
    Quarteroni, Alfio
    Ruiz-Baier, Ricardo
    NUMERISCHE MATHEMATIK, 2011, 118 (04) : 737 - 764
  • [50] FINITE ELEMENT APPROXIMATION OF THE BENARD PROBLEM.
    Krishnan, R.
    1600, (01):