Planar mesh refinement cannot be both local and regular

被引:0
|
作者
机构
来源
Numer Math | / 1卷 / 01期
关键词
D O I
暂无
中图分类号
学科分类号
摘要
引用
收藏
相关论文
共 50 条
  • [1] Planar mesh refinement cannot be both local and regular
    J.F. Buss
    R.B. Simpson
    Numerische Mathematik, 1998, 79 : 1 - 10
  • [2] Planar mesh refinement cannot be both local and regular
    Buss, JF
    Simpson, RB
    NUMERISCHE MATHEMATIK, 1998, 79 (01) : 1 - 10
  • [3] REPRESENTATION OF DAM-BREACH GEOMETRY ON A REGULAR 2-D MESH USING QUADTREE LOCAL MESH REFINEMENT
    Altinakar, M. S.
    McGrath, M. Z.
    Miglio, E.
    PROCEEDINGS OF THE XVIII INTERNATIONAL CONFERENCE ON COMPUTATIONAL METHODS IN WATER RESOURCES (CMWR 2010), 2010, : 632 - 639
  • [4] DOMAIN DECOMPOSITION WITH LOCAL MESH REFINEMENT
    GROPP, WD
    KEYES, DE
    SIAM JOURNAL ON SCIENTIFIC AND STATISTICAL COMPUTING, 1992, 13 (04): : 967 - 993
  • [5] LOCAL MESH REFINEMENT MULTILEVEL TECHNIQUES
    BAI, D
    BRANDT, A
    SIAM JOURNAL ON SCIENTIFIC AND STATISTICAL COMPUTING, 1987, 8 (02): : 109 - 134
  • [6] Resolving eddies by local mesh refinement
    Danilov, S.
    Wang, Q.
    OCEAN MODELLING, 2015, 93 : 75 - 83
  • [7] LOCAL ADAPTIVE MESH REFINEMENT FOR SHOCK HYDRODYNAMICS
    BERGER, MJ
    COLELLA, P
    JOURNAL OF COMPUTATIONAL PHYSICS, 1989, 82 (01) : 64 - 84
  • [8] Application of local mesh refinement in the DSMC method
    Wu, JS
    Tseng, KC
    Kuo, CH
    RAREFIED GAS DYNAMICS, 2001, 585 : 417 - 425
  • [9] LOCAL UNIFORM MESH REFINEMENT WITH MOVING GRIDS
    GROPP, WD
    SIAM JOURNAL ON SCIENTIFIC AND STATISTICAL COMPUTING, 1987, 8 (03): : 292 - 304
  • [10] A multidomain discretization method with local mesh refinement
    Meddahi, S
    Márquez, A
    IMA JOURNAL OF NUMERICAL ANALYSIS, 1999, 19 (02) : 251 - 271