Composite integrators for bi-Hamiltonian systems

被引:0
|
作者
Karasozen, B. [1 ]
机构
[1] Middle East Technical Univ, Ankara, Turkey
来源
Computers and Mathematics with Applications | 1996年 / 32卷 / 07期
关键词
Algorithms - Geometry - Integration - Mathematical operators - Numerical analysis - Vectors;
D O I
暂无
中图分类号
学科分类号
摘要
Symmetric composition methods are applied to dynamical systems in bi-Hamiltonian form; to Lotka-Volterra equations, to the completely integrable Lorenz equation and to the periodic Toda lattice. The numerical results obtained show that the Hamiltonians are preserved with high accuracy and the periodicity of the solutions are retained.
引用
收藏
页码:79 / 86
相关论文
共 50 条
  • [1] Composite integrators for bi-Hamiltonian systems
    Karasozen, B
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 1996, 32 (07) : 79 - 86
  • [2] Supersymmetric Bi-Hamiltonian Systems
    Sylvain Carpentier
    Uhi Rinn Suh
    Communications in Mathematical Physics, 2021, 382 : 317 - 350
  • [3] Quantum bi-Hamiltonian systems
    Cariñena, JF
    Grabowski, J
    Marmo, G
    INTERNATIONAL JOURNAL OF MODERN PHYSICS A, 2000, 15 (30): : 4797 - 4810
  • [4] Singularities of Bi-Hamiltonian Systems
    Bolsinov, Alexey
    Izosimov, Anton
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2014, 331 (02) : 507 - 543
  • [5] Supersymmetric Bi-Hamiltonian Systems
    Carpentier, Sylvain
    Suh, Uhi Rinn
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2021, 382 (01) : 317 - 350
  • [6] Singularities of Bi-Hamiltonian Systems
    Alexey Bolsinov
    Anton Izosimov
    Communications in Mathematical Physics, 2014, 331 : 507 - 543
  • [7] QUANTIZATION OF BI-HAMILTONIAN SYSTEMS
    KAUP, DJ
    OLVER, PJ
    JOURNAL OF MATHEMATICAL PHYSICS, 1990, 31 (01) : 113 - 117
  • [8] Alternative structures and bi-Hamiltonian systems
    Marmo, G
    Morandi, G
    Simoni, A
    Ventriglia, F
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2002, 35 (40): : 8393 - 8406
  • [9] BI-HAMILTONIAN SYSTEMS AND MASLOV INDEXES
    SCHERER, W
    JOURNAL OF MATHEMATICAL PHYSICS, 1992, 33 (11) : 3746 - 3756
  • [10] Bi-Hamiltonian partially integrable systems
    Giachetta, G
    Mangiarotti, L
    Sardanashvily, G
    JOURNAL OF MATHEMATICAL PHYSICS, 2003, 44 (05) : 1984 - 1997