Boundary integral method for Helmholtz equation with a smooth open arc boundary

被引:0
|
作者
Li, Ruixia
机构
关键词
D O I
暂无
中图分类号
学科分类号
摘要
引用
收藏
页码:410 / 412
相关论文
共 50 条
  • [41] A Fourth-Order Kernel-Free Boundary Integral Method for the Modified Helmholtz Equation
    Xie, Yaning
    Ying, Wenjun
    JOURNAL OF SCIENTIFIC COMPUTING, 2019, 78 (03) : 1632 - 1658
  • [42] A Fourth-Order Kernel-Free Boundary Integral Method for the Modified Helmholtz Equation
    Yaning Xie
    Wenjun Ying
    Journal of Scientific Computing, 2019, 78 : 1632 - 1658
  • [43] Boundary integral equation for tangential derivative of flux in Laplace and Helmholtz equations
    Gallego, R
    Martínez-Castro, AE
    INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 2006, 66 (02) : 334 - 363
  • [44] The numerical solution of first kind integral equation for the Helmholtz equation on smooth open arcs
    Tang, WJ
    Fu, HY
    Shen, LJ
    JOURNAL OF COMPUTATIONAL MATHEMATICS, 2001, 19 (05) : 489 - 500
  • [45] Galerkin boundary integral analysis for the 3D helmholtz equation
    Swager, M.R.
    Gray, L.J.
    Fata, S. Nintcheu
    CMES - Computer Modeling in Engineering and Sciences, 2010, 58 (03): : 297 - 314
  • [46] THE NUMERICAL SOLUTION OF FIRST KIND INTEGRAL EQUATION FOR THE HELMHOLTZ EQUATION ON SMOOTH OPEN ARCS
    Wei-jun Tang Hong-yuan Fu Long-jun Shen (Laboratory of Computational Physics
    Journal of Computational Mathematics, 2001, (05) : 489 - 500
  • [47] Dispersion analysis of the meshless local boundary integral equation and radial basis integral equation methods for the Helmholtz equation
    Dogan, Hakan
    Popov, Viktor
    Ooi, Ean Hin
    ENGINEERING ANALYSIS WITH BOUNDARY ELEMENTS, 2015, 50 : 360 - 371
  • [48] BOUNDARY INTEGRAL-EQUATIONS FOR 3-DIMENSIONAL HELMHOLTZ EQUATION
    KLEINMAN, RE
    ROACH, GF
    SIAM REVIEW, 1974, 16 (02) : 214 - 236
  • [49] On the Properties of Quasi-periodic Boundary Integral Operators for the Helmholtz Equation
    Rubén Aylwin
    Carlos Jerez-Hanckes
    José Pinto
    Integral Equations and Operator Theory, 2020, 92
  • [50] On the Properties of Quasi-periodic Boundary Integral Operators for the Helmholtz Equation
    Aylwin, Ruben
    Jerez-Hanckes, Carlos
    Pinto, Jose
    INTEGRAL EQUATIONS AND OPERATOR THEORY, 2020, 92 (02)