The helium retention properties such as retained amount, desorption temperature and activation energy of desorption were examined for graphite, B4C, SiC and tungsten. After the helium ion irradiation with a helium energy of 5 keV in an ECR ion source, these data were obtained by using a technique of thermal desorption spectroscopy. The amount of retained helium saturated at the fluence higher than (0.5-3)×1022 He/m2 for every material. The maximum retained amount was (1-5)×1021 He/m2. The maximum helium concentration in the implanted depth was compared with that of hydrogen similarly obtained. The atomic ratio, He/H, was 0.3 for graphite, 0.15 for B4C, 0.3 for SiC and 0.3 for tungsten. It was seen that a considerable large amount of helium was trapped in the plasma facing materials. The desorption temperatures were 570 K for graphite, 570 and 1200 K for B4C, 570 and 1140 K for SiC and 770 K for tungsten. The helium retention can be reduced by baking with a temperature of 600 K or 800 K for graphite or tungsten, respectively. However, such reduction becomes difficult for SiC or B4C, since the desorption temperature is very high. Thus, the effective shielding of the scrape-off layer in a diverted plasma has to work sufficiently to avoid the back flow of helium into the core plasma, when the helium emits during discharges.