Four-dimensional stochastic matrixes with the double product property

被引:0
|
作者
Bodnariu, M. [1 ]
机构
[1] Dept. of Mathematics I, University Politehnica of Bucharest
关键词
D O I
暂无
中图分类号
学科分类号
摘要
In this paper we find all the four-dimensional stochastic matrixes defined on a set with two elements which have the double product property.
引用
收藏
页码:9 / 16
相关论文
共 50 条
  • [1] Four dimensional stochastic matrixes on {0, 1}
    Bodnariu, M.
    UPB Scientific Bulletin, Series A: Applied Mathematics and Physics, 2001, 63 (02): : 11 - 18
  • [2] The Four-Dimensional Factors in the Product Design
    Liu Huiwei
    Zhu Na
    2012 INTERNATIONAL ACADEMIC CONFERENCE OF ART ENGINEERING AND CREATIVE INDUSTRY (IACAE 2012), 2012, : 392 - 396
  • [3] Instabilities and degeneracies of the four-dimensional stochastic web
    Pekarsky, S
    RomKedar, V
    NONLINEARITY, 1997, 10 (04) : 949 - 963
  • [4] Four-dimensional double-singular oscillator
    Petrosyan, M.
    PHYSICS OF ATOMIC NUCLEI, 2008, 71 (06) : 1094 - 1101
  • [5] Four-dimensional double-singular oscillator
    M. Petrosyan
    Physics of Atomic Nuclei, 2008, 71 : 1094 - 1101
  • [6] Four-dimensional Riemannian product manifolds with circulant structures
    Dokuzova, Iva
    STUDIA UNIVERSITATIS BABES-BOLYAI MATHEMATICA, 2023, 68 (02): : 439 - 448
  • [7] Four-dimensional matrix transformation and the double Gibbs' phenomenon
    Patterson, Richard F.
    Rhoades, Billy E.
    MATHEMATICAL COMMUNICATIONS, 2009, 14 (01) : 7 - 12
  • [8] Four-Dimensional Matrix of Geometrically Dominated Double Series
    Patterson, Richard F.
    Savas, Ekrem
    NUMERICAL FUNCTIONAL ANALYSIS AND OPTIMIZATION, 2015, 36 (02) : 240 - 247
  • [9] Three-point transition function generated by four dimensional stochastic matrixes
    2001, Politechnica University of Bucharest (63):
  • [10] Four-dimensional composition-structure-property-dispersity relationship
    V. T. Kalinnikov
    E. F. Kustov
    V. M. Novotortsev
    S. V. Serebyannikov
    Russian Journal of Inorganic Chemistry, 2010, 55 : 2031 - 2072