Prediction of Nonlinear Time Series Using the Weighted Sum of One-Dimensional Regressions

被引:0
|
作者
机构
来源
J Commun Technol Electron | / 6卷 / 665-667期
关键词
D O I
暂无
中图分类号
学科分类号
摘要
引用
收藏
相关论文
共 50 条
  • [31] ON THE ONE-DIMENSIONAL NONLINEAR ELASTOHYDRODYNAMIC LUBRICATION
    GOELEVEN, D
    NGUYEN, VH
    BULLETIN OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 1994, 50 (03) : 353 - 372
  • [32] Thermodynamics of one-dimensional nonlinear lattices
    V. N. Likhachev
    T. Yu. Astakhova
    G. A. Vinogradov
    Russian Journal of Physical Chemistry B, 2009, 3 : 517 - 528
  • [33] Quantification and prediction of extreme events in a one-dimensional nonlinear dispersive wave model
    Cousins, Will
    Sapsis, Themistoklis P.
    PHYSICA D-NONLINEAR PHENOMENA, 2014, 280 : 48 - 58
  • [34] The regular one-dimensional analytical sum diversities.
    Muehlendyck, Otto
    MATHEMATISCHE ANNALEN, 1915, 77 : 404 - 415
  • [35] Thermodynamics of one-dimensional nonlinear lattices
    Likhachev, V. N.
    Astakhova, T. Yu.
    Vinogradov, G. A.
    RUSSIAN JOURNAL OF PHYSICAL CHEMISTRY B, 2009, 3 (04) : 517 - 528
  • [36] MODEL FOR ONE-DIMENSIONAL, NONLINEAR VISCOELASTICITY
    MACCAMY, RC
    QUARTERLY OF APPLIED MATHEMATICS, 1977, 35 (01) : 21 - 33
  • [37] POLARONS ON A ONE-DIMENSIONAL NONLINEAR LATTICE
    ZOLOTARYUK, AV
    MISTRIOTIS, A
    ECONOMOU, EN
    PHYSICAL REVIEW B, 1993, 48 (18): : 13518 - 13523
  • [38] A novel high-order weighted fuzzy time series model and its application in nonlinear time series prediction
    Jiang, Ping
    Dong, Qingli
    Li, Peizhi
    Lian, Lanlan
    APPLIED SOFT COMPUTING, 2017, 55 : 44 - 62
  • [39] Estimation of parameters in one-dimensional maps from noisy chaotic time series
    Smirnov, DA
    Vlaskin, VS
    Ponomarenko, VI
    PHYSICS LETTERS A, 2005, 336 (06) : 448 - 458
  • [40] A lower estimate of the topological entropy from a one-dimensional reconstruction of time series
    Visaya, Maria Vivien V.
    JOURNAL OF MATHEMATICS OF KYOTO UNIVERSITY, 2006, 46 (03): : 637 - 655