Corrosion behavior of Mg−Li alloys: A review

被引:0
作者
MA X.-C. [1 ]
JIN S.-Y. [1 ]
WU R.-Z. [1 ,2 ]
WANG J.-X. [1 ]
WANG G.-X. [1 ]
KRIT B. [3 ]
BETSOFEN S. [3 ]
机构
[1] Key Laboratory of Superlight Materials & Surface Technology, Ministry of Education, Harbin Engineering University, Harbin
[2] College of Science, Heihe University, Heihe
[3] Moscow Aviation Institute, National Research University, Moscow
来源
Transactions of Nonferrous Metals Society of China (English Edition) | 2021年 / 31卷 / 11期
基金
中国国家自然科学基金;
关键词
alloying; corrosion behavior; heat treatment; Mg−Li alloy; microstructure; plastic deformation; surface film;
D O I
10.1016/S1003-6326(21)65728-X
中图分类号
学科分类号
摘要
It has been known that the lack of excellent corrosion resistance is the key problem restricting the wide application of Mg−Li alloys. Based on a quantity of literature about corrosion behavior of Mg−Li alloys, this review elaborates the factors affecting the corrosion behavior of Mg−Li alloys and the processing methods for improving corrosion resistance. The corrosion characteristics of Mg−Li alloys are described firstly. Then, it is explained that the grain size, orientation, second phase, and surface film strongly influence corrosion performance, which can be tailored by alloying, plastic deformation, and heat treatment. Further in-depth discussion about the corrosion mechanisms for Mg−Li alloys was also presented. Finally, important points of improving corrosion resistance are suggested. © 2021 The Nonferrous Metals Society of China
引用
收藏
页码:3228 / 3254
页数:26
相关论文
共 138 条
[1]  
TAMMAN G.M., MASING G., Behavior of lithium, toward sodium, potassium, yin, cadmium and magnesium. [J], Zeitschrift fur Anorganische and Allgemeine Chemie, 67, pp. 197-198, (1960)
[2]  
SANSCHAGRIN A., TREMBLAY R., ANGERS R., DUBE D., Mechanical properties and microstructure of new magnesium–lithium base alloys [J], Materials Science and Engineering A, 220, 1-2, pp. 69-77, (1996)
[3]  
WU R., YAN Y., WANG G., MURR L.E., HAN W., ZHANG Z., ZHANG M., Recent progress in magnesium–lithium alloys [J], International Materials Reviews, 60, 2, pp. 65-100, (2015)
[4]  
ZHANG C., WU L., ZHAO Z.-L., XIE Z.-H., HUANG G.-S., LIU L., JIANG B., ATRENS A., PAN F.-S., Effect of Li content on microstructure and mechanical property of Mg–xLi–3(Al–Si) alloys [J], Transactions of Nonferrous Metals Society of China, 29, 12, pp. 2506-2513, (2019)
[5]  
ZHANG X.-S., CHEN Y.-J., HU J.-L., Recent advances in the development of aerospace materials [J], Progress in Aerospace Sciences, 97, pp. 22-34, (2018)
[6]  
FRANKEL G.S., Ready for the road [J], Nature Materials, 14, 12, pp. 1189-1190, (2015)
[7]  
CHEN X.-Y., ZHANG Y., CONG M.-Q., LU Y.-L., LI X.-P., Effect of Sn content on microstructure and tensile properties of as-cast and as-extruded Mg–8Li– 3Al–(1,2,3)Sn alloys [J], Transactions of Nonferrous Metals Society of China, 30, 8, pp. 2079-2089, (2020)
[8]  
DING H.-B., LIU Q., ZHOU H.-T., ZHOU X., ATRENS A., Effect of thermal-mechanical processing on microstructure and mechanical properties of duplex-phase Mg–8Li–3Al–0.4Y alloy [J], Transactions of Nonferrous Metals Society of China, 27, 12, pp. 2587-2597, (2017)
[9]  
JI Q., WANG Y., WU R.-Z., WEI Z., MA X.-C., ZHANG J.-H., HOU L.-G., ZHANG M.-L., High specific strength Mg–Li–Zn–Er alloy processed by multi deformation processes [J], Materials Characterization, 160, (2020)
[10]  
ZHONG F., WU H.-J., JIAO Y.-L., WU R.-Z., ZHANG J.-H., HOU L.-G., ZHANG M.-L., Effect of Y and Ce on the microstructure, mechanical properties and anisotropy of as-rolled Mg–8Li–1Al alloy [J], Journal of Materials Science & Technology, 39, pp. 124-134, (2020)