Knee osteoarthritis severity detection using deep inception transfer learning

被引:1
作者
Sohail, Muhammad [1 ]
Azad, Muhammad Muzammil [1 ]
Kim, Heung Soo [1 ]
机构
[1] Department of Mechanical, Robotics and Energy Engineering, Dongguk University-Seoul, 30 Pildong-ro 1-gil, Jung-gu, Seoul
基金
新加坡国家研究基金会;
关键词
Deep learning; Inception model; Knee arthritis; Knee degradation; Osteoarthritis; Transfer learning;
D O I
10.1016/j.compbiomed.2024.109641
中图分类号
学科分类号
摘要
Osteoarthritis (OA) is a prevalent condition resulting in physical limitations. Early detection of OA is critical to effectively manage this condition. However, the diagnosis of early-stage arthritis remains challenging. The Kellgren and Lawrence (KL) grading system is a common method that is accepted worldwide, uses five grades to classify the severity of OA, and relies on the ability of the orthopedist to accurately interpret radiograph images. To improve the accuracy of radiograph image interpretation, artificial intelligence-assisted models have been developed that include shallow or deep learning approaches and multi-step techniques; however, their accuracy remains variable. This work proposes a transfer learning approach using an InceptionV3-based model fine-tuned on the Osteoarthritis Initiative dataset, and aims to enhance the identification of OA severity levels through dual-stage preprocessing and convolutional neural networks for feature extraction. The fine-tuned IV3 (FT−IV3) model outperformed the IV3 model with training, validation, and testing accuracies of (96.33, 93.82, and 92.25) %, compared to IV3 accuracies of (91.64, 82.04, and 86.20) %, respectively. Additionally, Cohen's Kappa value for the FT−IV3 model (90.69 %) exceeds that of the IV3 model (83.15 %), indicating a better diagnosis of OA severity. This improvement allows the FT−IV3 model to effectively classify moderate and severe-grade OA. © 2024 Elsevier Ltd
引用
收藏
相关论文
共 57 条
[1]  
Conaghan P.G., Porcheret M., Kingsbury S.R., Gammon A., Soni A., Hurley M., Rayman M.P., Barlow J., Hull R.G., Cumming J., Impact and therapy of osteoarthritis: the arthritis care OA nation 2012 survey, Clin. Rheumatol., 34, pp. 1581-1588, (2015)
[2]  
Vaishya R., Pariyo G.B., Agarwal A.K., Vijay V., Non-operative management of osteoarthritis of the knee joint, J. clinical orthopaed. trauma, 7, 3, pp. 170-176, (2016)
[3]  
Cui A., Li H., Wang D., Zhong J., Chen Y., Lu H., Global, regional prevalence, incidence and risk factors of knee osteoarthritis in population-based studies, EClinicalMedicine, 29, (2020)
[4]  
Fraenkel L., Bogardus S.T., Concato J., Wittink D.R., Treatment options in knee osteoarthritis: the patient's perspective, Arch. Intern. Med., 164, 12, pp. 1299-1304, (2004)
[5]  
Sohail M., Park J., Kim J.Y., Kim H.S., Lee J., Modified whiteside's line-based transepicondylar Axis for imageless total knee arthroplasty, Mathematics, 10, 19, (2022)
[6]  
Sohail M., Kim J.Y., Park J., Kim H.S., Lee J., Femoral coordinate system based on articular surfaces: implications for computer-assisted knee arthroplasty, Comput. Biol. Med., 163, (2023)
[7]  
Luyten F.P., Denti M., Filardo G., Kon E., Engebretsen L., Definition and classification of early osteoarthritis of the knee, Knee Surg. Sports Traumatol. Arthrosc., 20, pp. 401-406, (2012)
[8]  
Chaisson C., Gale D., Gale E., Kazis L., Skinner K., Felson D., Detecting radiographic knee osteoarthritis: what combination of views is optimal?, Rheumatology, 39, 11, pp. 1218-1221, (2000)
[9]  
Munoz-Garcia N., Cordero-Ampuero J., Madero-Jarabo R., Diagnostic accuracy of magnetic resonance images and weight-bearing radiographs in patients with arthroscopic-proven medial osteoarthritis of the knee, Clin. Med. Insights Arthritis Musculoskelet. Disord., 13, (2020)
[10]  
Duncan S.T., Khazzam M.S., Burnham J.M., Spindler K.P., Dunn W.R., Wright R.W., Sensitivity of standing radiographs to detect knee arthritis: a systematic review of level I studies, Arthrosc. J. Arthrosc. Relat. Surg., 31, 2, pp. 321-328, (2015)