Supramolecular peptide-based materials have great potential for revolutionizing fields like nanotechnology and medicine. However, deciphering the intricate sequence-to-assembly pathway, essential for their real-life applications, remains a challenging endeavour. Their discovery relies primarily on empirical approaches that require substantial financial resources, impeding their disruptive potential. Consequently, despite the multitude of characterized self-assembling peptides and their demonstrated advantages, only a few peptide materials have found their way to the market. Machine learning trained on experimentally verified data presents a promising tool for quickly identifying sequences with a high propensity to self-assemble, thereby focusing resource expenditures on the most promising candidates. Here we introduce a framework that implements an accurate classifier in a metaheuristic-based generative model to navigate the search through the peptide sequence space of challenging size. For this purpose, we trained five recurrent neural networks among which the hybrid model that uses sequential information on aggregation propensity and specific physicochemical properties achieved a superior performance with 81.9% accuracy and 0.865 F1 score. Molecular dynamics simulations and experimental validation have confirmed the generative model to be 80-95% accurate in the discovery of self-assembling peptides, outperforming the current state-of-the-art models. The proposed modular framework efficiently complements human intuition in the exploration of self-assembling peptides and presents an important step in the development of intelligent laboratories for accelerated material discovery. A generative model guided by a machine-learning-based classifier capable of assessing unexplored regions of the peptide space in the search for new self-assembling sequences.
机构:
Argonne Natl Lab, Ctr Nanoscale Mat, Lemont, IL 60439 USA
Indian Inst Technol IIT Madras, Dept Met & Mat Engn, Chennai, Tamil Nadu, IndiaArgonne Natl Lab, Ctr Nanoscale Mat, Lemont, IL 60439 USA
Batra, Rohit
;
Loeffler, Troy D.
论文数: 0引用数: 0
h-index: 0
机构:
Argonne Natl Lab, Ctr Nanoscale Mat, Lemont, IL 60439 USA
Univ Illinois, Dept Mech & Ind Engn, Chicago, IL 60680 USAArgonne Natl Lab, Ctr Nanoscale Mat, Lemont, IL 60439 USA
Loeffler, Troy D.
;
Chan, Henry
论文数: 0引用数: 0
h-index: 0
机构:
Argonne Natl Lab, Ctr Nanoscale Mat, Lemont, IL 60439 USA
Univ Illinois, Dept Mech & Ind Engn, Chicago, IL 60680 USAArgonne Natl Lab, Ctr Nanoscale Mat, Lemont, IL 60439 USA
Chan, Henry
;
Srinivasan, Srilok
论文数: 0引用数: 0
h-index: 0
机构:
Argonne Natl Lab, Ctr Nanoscale Mat, Lemont, IL 60439 USAArgonne Natl Lab, Ctr Nanoscale Mat, Lemont, IL 60439 USA
机构:
Johns Hopkins Univ, Krieger Sch Arts & Sci, Dept Chem, 3400 North Charles St, Baltimore, MD USAYale NUS Coll, Div Sci, 16 Coll Ave West, Singapore 138527, Singapore
Lee, Wei Hao
;
Ni, Ming
论文数: 0引用数: 0
h-index: 0
机构:
Yachay Tech Univ, Sch Biol Sci & Engn, Hacienda San Jose S-N, San Miguel De Urcuqui 100105, EcuadorYale NUS Coll, Div Sci, 16 Coll Ave West, Singapore 138527, Singapore
机构:
Argonne Natl Lab, Ctr Nanoscale Mat, Lemont, IL 60439 USA
Indian Inst Technol IIT Madras, Dept Met & Mat Engn, Chennai, Tamil Nadu, IndiaArgonne Natl Lab, Ctr Nanoscale Mat, Lemont, IL 60439 USA
Batra, Rohit
;
Loeffler, Troy D.
论文数: 0引用数: 0
h-index: 0
机构:
Argonne Natl Lab, Ctr Nanoscale Mat, Lemont, IL 60439 USA
Univ Illinois, Dept Mech & Ind Engn, Chicago, IL 60680 USAArgonne Natl Lab, Ctr Nanoscale Mat, Lemont, IL 60439 USA
Loeffler, Troy D.
;
Chan, Henry
论文数: 0引用数: 0
h-index: 0
机构:
Argonne Natl Lab, Ctr Nanoscale Mat, Lemont, IL 60439 USA
Univ Illinois, Dept Mech & Ind Engn, Chicago, IL 60680 USAArgonne Natl Lab, Ctr Nanoscale Mat, Lemont, IL 60439 USA
Chan, Henry
;
Srinivasan, Srilok
论文数: 0引用数: 0
h-index: 0
机构:
Argonne Natl Lab, Ctr Nanoscale Mat, Lemont, IL 60439 USAArgonne Natl Lab, Ctr Nanoscale Mat, Lemont, IL 60439 USA
机构:
Johns Hopkins Univ, Krieger Sch Arts & Sci, Dept Chem, 3400 North Charles St, Baltimore, MD USAYale NUS Coll, Div Sci, 16 Coll Ave West, Singapore 138527, Singapore
Lee, Wei Hao
;
Ni, Ming
论文数: 0引用数: 0
h-index: 0
机构:
Yachay Tech Univ, Sch Biol Sci & Engn, Hacienda San Jose S-N, San Miguel De Urcuqui 100105, EcuadorYale NUS Coll, Div Sci, 16 Coll Ave West, Singapore 138527, Singapore