Autoencoder-Based Eggshell Crack Detection Using Acoustic Signal

被引:0
|
作者
Yabanova, Ismail [1 ]
Balci, Zekeriya [2 ]
Yumurtaci, Mehmet [3 ]
Unler, Tarik [4 ]
机构
[1] Manisa Celal Bayar Univ, HFT Technol Fac, Elect Engn Dept, Manisa, Turkiye
[2] Van Yuzuncu Yil Univ, Caldiran Vocat Sch, Elect & Automat Dept, Van, Turkiye
[3] Afyon Kocatepe Univ, Dept Elect & Elect Engn, Afyon, Turkiye
[4] Necmettin Erbakan Univ, Aeronaut & Astronaut Fac, Avionics Dept, Konya, Turkiye
关键词
acoustic signal; autoencoder; classification; crack; eggshell;
D O I
10.1111/jfpe.14780
中图分类号
TQ [化学工业];
学科分类号
0817 ;
摘要
Breaks or cracks in eggshells offer substantial food safety issues. Bacteria and viruses, in particular, are more likely to enter the egg through breaks and cracks, increasing the risk of food poisoning. Furthermore, deformations in the shell may compromise the integrity of the protective shell, exposing the egg to more external variables and causing it to lose freshness and decay faster. To reduce such hazards, this research created an innovative crack detection system based on an autoencoder (AE) that uses acoustic signals from eggshells. A system that creates an acoustic effect by hitting the eggshell without damaging it was designed, and these effects were recorded through a microphone. Acoustic signal data of size 1 x 1000 was fed into k nearest neighbor (kNN), decision tree (DT), and support vector machine (SVM) classifiers. AE was employed to reduce data size in order to accommodate the raw data's unique features. This AE model, which reduces data size, was used with many classifiers and was able to accurately distinguish between intact and cracked eggs. The built AE-based classifier model completed the classification procedure with 100% accuracy, including microcracks that are invisible to the naked eye.
引用
收藏
页数:10
相关论文
共 50 条
  • [21] An autoencoder-based model for forest disturbance detection using Landsat time series data
    Zhou, Gaoxiang
    Liu, Ming
    Liu, Xiangnan
    INTERNATIONAL JOURNAL OF DIGITAL EARTH, 2021, 14 (09) : 1087 - 1102
  • [22] CAFNet: Compressed Autoencoder-based Federated Network for Anomaly Detection
    Tayeen, Abu Saleh Md
    Misra, Satyajayant
    Cao, Huiping
    Harikumar, Jayashree
    MILCOM 2023 - 2023 IEEE MILITARY COMMUNICATIONS CONFERENCE, 2023,
  • [23] Autoencoder-based deep metric learning for network intrusion detection
    Andresini, Giuseppina
    Appice, Annalisa
    Malerba, Donato
    INFORMATION SCIENCES, 2021, 569 (569) : 706 - 727
  • [24] Development of deep autoencoder-based anomaly detection system for HANARO
    Ryu, Seunghyoung
    Jeon, Byoungil
    Seo, Hogeon
    Lee, Minwoo
    Shin, Jin-Won
    Yu, Yonggyun
    NUCLEAR ENGINEERING AND TECHNOLOGY, 2023, 55 (02) : 475 - 483
  • [25] A Fast Autoencoder-based Recommender
    Jiang, Jiajia
    Xia, Yunni
    Shang, Mingsheng
    2019 IEEE INTERNATIONAL CONFERENCE ON SYSTEMS, MAN AND CYBERNETICS (SMC), 2019, : 1732 - 1737
  • [26] Autoencoder-Based Unsupervised Surface Defect Detection Using Two-Stage Training
    Shiferaw, Tesfaye Getachew
    Yao, Li
    JOURNAL OF IMAGING, 2024, 10 (05)
  • [27] Convolutional Autoencoder-Based Flaw Detection for Steel Wire Ropes
    Zhang, Guoyong
    Tang, Zhaohui
    Zhang, Jin
    Gui, Weihua
    SENSORS, 2020, 20 (22) : 1 - 12
  • [28] Autoencoder-based outlier detection for sparse, high dimensional data
    Chen, Wanghu
    Li, Huijun
    Li, Jing
    Arshad, Ali
    2020 IEEE INTERNATIONAL CONFERENCE ON BIG DATA (BIG DATA), 2020, : 2735 - 2742
  • [29] DeepStream: Autoencoder-based stream temporal clustering and anomaly detection
    Harush, Shimon
    Meidan, Yair
    Shabtai, Asaf
    COMPUTERS & SECURITY, 2021, 106
  • [30] A residual autoencoder-based transformer for fault detection of multivariate processes
    Shang, Jilin
    Yu, Jianbo
    APPLIED SOFT COMPUTING, 2024, 163