DOUBLE-LAYER METAMATERIAL PATCH ANTENNA WITH ENHANCED GAIN AND DIRECTIVITY

被引:0
作者
Ma J. [1 ]
Chen C. [1 ]
Zhao Y. [1 ]
Mu Z. [2 ]
Du H. [1 ]
机构
[1] The Department of Basic Sciences, AirForce Engineering University, Shaanxi, Xian
来源
Telecommunications and Radio Engineering (English translation of Elektrosvyaz and Radiotekhnika) | 2023年 / 82卷 / 10期
关键词
double-layer; ENZ; gain enhancement; metamaterial antenna;
D O I
10.1615/TelecomRadEng.2023048006
中图分类号
学科分类号
摘要
A double-layer metamaterial with epsilon-near-zero (ENZ) properties is proposed loading on the patch antenna. The double-layer metamaterial that has two layers of the same material and structure is produced on FR4 substrate. The gain and radiation directivity of the patch antenna can be greatly improved covering with the proposed ENZ metamaterial. Simulation results show that by coating the ENZ superstrate, the gain of the patch antenna is increased from 5.99 dBi to 10 dBi, corresponding to 66.9% gain enhancement and greatly improved radiation directivity. While the performance of the patch antenna is improved, the working frequency and bandwidth of the patch antenna are not affected. © 2023 by Begell House, Inc.
引用
收藏
页码:41 / 55
页数:14
相关论文
共 27 条
[1]  
Amram Bengio E., Senic D., Taylor L.W., Headrick R.J., King M., Chen P., Pasquali M., Carbon Nanotube Thin Film Patch Antennas for Wireless Communications, Appl. Phys. Lett, 114, 20, (2019)
[2]  
Arya R., Raghuvanshi D.K., Design of Asymmetrical Multiple Open Slot Loaded Microstrip Antenna for WiBro/WiMAX/WLAN Band Application, Mod. Phys. Lett. B, 34, 18, (2020)
[3]  
Bayat M., Khalilpour J., A High Gain Miniaturized Patch Antenna with an Epsilon Near Zero Superstrate, Mater. Res. Express, 6, 4, (2019)
[4]  
Davoudabadifarahani H., Ghalamkari B., High Efficiency Miniaturized Microstrip Patch Antenna for Wideband Terahertz Communications Applications, Optik, 194, (2019)
[5]  
Eberspacher M.A., Eibert T.F., A Narrow Via-Free Composite Right/Left-Handed Leaky Wave Antenna with Low Cross-Polarization, 2010 IEEE Antennas and Propagation Society Inter. Sym, pp. 1-4, (2010)
[6]  
Guo M., Qian R., Zhang Q., Guo L., Yang Z., Xu Z., Wang Z., A High-Gain Antipodal Vivaldi Antenna with Metamaterial Covers, IET Microw. Antennas Propag, 13, 15, pp. 2654-2660, (2019)
[7]  
Guo Y.Q., Pan Y.M., Zheng S.Y., Lu K., A Singly-Fed Dual-Band Microstrip Antenna for Microwave and Millimeter-Wave Applications in 5G Wireless Communication, IEEE Trans. Veh. Technol, 70, 6, pp. 5419-5430, (2021)
[8]  
Hien N.T., Ca N.X., Khuyen B.X., Van Huynh T., Khiem N.S., Tung N.T., Tung B.S., Active Control of the Hybridization Effect of Near-Field Coupled Resonators in Metamaterial for a Tunable Negative Refractive Index at Terahertz Frequencies, J. Phys. Chem. Solids, 156, (2021)
[9]  
Iliyasu A.Y., Hamid M.R., Rahim M.K.A., Yusoff M.F.M., Aminu-Baba M., Gajibo M.M., Wideband Frequency Reconfigurable Metamaterial Antenna Design with Double H Slots, Bull. Electr. Eng. Inform, 9, 5, pp. 1971-1978, (2020)
[10]  
Jiang H., Xue Z., Li W., Ren W., Cao M., Low-RCS High-Gain Partially Reflecting Surface Antenna with Metamaterial Ground Plane, IEEE Trans. Antennas Propag, 64, 9, pp. 4127-4132, (2016)