Automatic detection of obstructive sleep apnea through nonlinear dynamics of single-lead ECG signals

被引:0
|
作者
Chen, Liangjie [1 ]
Liu, Fenglin [1 ]
Wang, Ying [1 ]
Wang, Qinghui [1 ]
Yuan, Chengzhi [2 ]
Zeng, Wei [1 ]
机构
[1] Longyan Univ, Sch Phys & Mech & Elect Engn, Longyan 364012, Peoples R China
[2] Univ Rhode Isl, Dept Mech Ind & Syst Engn, Kingston, RI 02881 USA
关键词
Electrocardiography (ECG); Obstructive sleep apnea (OSA); Tunable Q-factor wavelet transform (TQWT); Variational mode decomposition (VMD); ECG system dynamics; Neural networks; EMPIRICAL MODE DECOMPOSITION; PHASE-SPACE RECONSTRUCTION; WAVELET TRANSFORM; EEG SIGNALS; CORRELATION-COEFFICIENT; FEATURE-SELECTION; CLASSIFICATION; DIAGNOSIS; ALGORITHM; OPTIMIZATION;
D O I
10.1007/s10489-024-06013-9
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Obstructive Sleep Apnea (OSA) is a sleep disorder where the brain and body receive insufficient oxygen during sleep. Traditional diagnosis involves Polysomnography (PSG), which is time-consuming, tedious, subjective, and costly in clinical settings. To address these drawbacks, computer-assisted diagnosis techniques have emerged, utilizing a single physiological signal. This study aims to introduce an innovative method for automatically detecting OSA based on the dynamics of the ECG system. The approach combines tunable quality factor (Q-factor) wavelet transform (TQWT), variational mode decomposition (VMD), and three-dimensional (3D) phase space for feature extraction, capturing clinically relevant information from OSA ECG recordings. Neural networks are employed to model and identify ECG system dynamics via deterministic learning theory, classifying normal and OSA ECG signals based on differences in dynamics using a bank of dynamical estimators. An assessment is conducted utilizing a 10-fold cross-validation methodology on a PhysioNet apnea-ECG dataset, which comprises 70 nocturnal recordings derived from an equal number of subjects. The empirical outcomes demonstrate that the introduced approach, which amalgamates a classifier based on neural network principles and the recommended attributes, attains superior accuracy (98.27%\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\%$$\end{document}), sensitivity (97.68%\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\%$$\end{document}), and specificity (98.63%\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\%$$\end{document}) in contrast to conventional PSG. The results corroborate the suggested technique as a viable substitute for automatic OSA detection in a clinical setting.
引用
收藏
页数:29
相关论文
共 50 条
  • [1] A Novel Algorithm for the Automatic Detection of Sleep Apnea From Single-Lead ECG
    Varon, Carolina
    Caicedo, Alexander
    Testelmans, Dries
    Buyse, Bertien
    Van Huffel, Sabine
    IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING, 2015, 62 (09) : 2269 - 2278
  • [2] Single-lead ECG based multiscale neural network for obstructive sleep apnea detection
    Wang, Zhiya
    Peng, Caijing
    Li, Baozhu
    Penzel, Thomas
    Liu, Ran
    Zhang, Yuan
    Yu, Xinge
    INTERNET OF THINGS, 2022, 20
  • [3] Detection of sleep apnea using deep neural networks and single-lead ECG signals
    Zarei, Asghar
    Beheshti, Hossein
    Asl, Babak Mohammadzadeh
    BIOMEDICAL SIGNAL PROCESSING AND CONTROL, 2022, 71
  • [4] Feature selection on single-lead ECG for obstructive sleep apnea diagnosis
    Guruler, Huseyin
    Sahin, Mesut
    Ferikoglu, Abdullah
    TURKISH JOURNAL OF ELECTRICAL ENGINEERING AND COMPUTER SCIENCES, 2014, 22 (02) : 465 - 478
  • [5] Detection of Central Sleep Apnea Based on a Single-Lead ECG
    Phan Duy Hung
    ICBRA 2018: PROCEEDINGS OF 2018 5TH INTERNATIONAL CONFERENCE ON BIOINFORMATICS RESEARCH AND APPLICATIONS, 2018, : 78 - 83
  • [6] Wavelet transform and deep learning-based obstructive sleep apnea detection from single-lead ECG signals
    Yuxing Lin
    Hongyi Zhang
    Wanqing Wu
    Xingen Gao
    Fei Chao
    Juqiang Lin
    Physical and Engineering Sciences in Medicine, 2024, 47 : 119 - 133
  • [7] Wavelet transform and deep learning-based obstructive sleep apnea detection from single-lead ECG signals
    Lin, Yuxing
    Zhang, Hongyi
    Wu, Wanqing
    Gao, Xingen
    Chao, Fei
    Lin, Juqiang
    PHYSICAL AND ENGINEERING SCIENCES IN MEDICINE, 2024, 47 (01) : 119 - 133
  • [8] Automatic Screening of Obstructive Sleep Apnea from Single-Lead Electrocardiogram
    Hassan, Ahnaf Rashik
    2ND INTERNATIONAL CONFERENCE ON ELECTRICAL ENGINEERING AND INFORMATION COMMUNICATION TECHNOLOGY (ICEEICT 2015), 2015,
  • [9] Automated Detection of Obstructive Sleep Apnoea by Single-lead ECG through ELM Classification
    Sadr, Nadi
    de Chazal, Philip
    2014 COMPUTING IN CARDIOLOGY CONFERENCE (CINC), VOL 41, 2014, 41 : 909 - 912
  • [10] Automatic Detection of Obstructive Sleep Apnea Using Wavelet Transform and Entropy-Based Features From Single-Lead ECG Signal
    Zarei, Asghar
    Asl, Babak Mohammadzadeh
    IEEE JOURNAL OF BIOMEDICAL AND HEALTH INFORMATICS, 2019, 23 (03) : 1011 - 1021