Optimizing energy use in the integrated utilization of woody biomass: Process development and simulation

被引:2
作者
Wan, Qiaoling [1 ]
Lu, Yanju [2 ]
Cheng, Long [3 ]
Shi, Jingjing [1 ]
Xia, Li [4 ]
Xu, Junming [1 ]
机构
[1] Chinese Acad Forestry, Inst Chem Ind Forest Prod, Key Lab Biomass Energy & Mat Jiangsu Prov, Natl Engn Lab Biomass Chem Utilizat, Nanjing 210042, Jiangsu, Peoples R China
[2] Nanjing Forestry Univ, Coll Chem Engn, Jiangsu Coinnovat Ctr Efficient Proc & Utilizat Fo, Int Innovat Ctr Forest Chem & Mat, Nanjing 210037, Jiangsu, Peoples R China
[3] Jiangsu Inst Technol, Changzhou 213001, Jiangsu, Peoples R China
[4] Qingdao Univ Sci & Technol, Inst Proc Syst Engn, Coll Chem Engn, Qingdao 266042, Shandong, Peoples R China
关键词
Biorefinery; Process simulation; Energy consumption; Lignocellulosic biomass; DEPOLYMERIZATION; FRACTIONATION; LIQUEFACTION; EXTRACTION; CELLULOSE;
D O I
10.1016/j.indcrop.2024.120426
中图分类号
S2 [农业工程];
学科分类号
0828 ;
摘要
A biorefinery process is developed for the fractionation of oil-tea camellia fruit shell wastes into three main products. A scale-up experiment was first carried out in this paper. Oil-tea camellia fruit shell wastes were first hydrolyzed in a C6H8O7/H2O system to remove the hemicellulose. The aqueous fraction comprises monosaccharides and oligosaccharides, achieving a hemicellulose removal efficiency of 79.7 %. Lignin was extracted from the residual solids using an ethanol/isopropanol solvent system with a purity of 87.81 %. The solid product obtained after lignin extraction can serve as a growing medium. Then given the energy-intensive nature of pretreatment, energy consumption of the process was assessed via process simulation software. The water evaporation utilities account for approximately 62 % of the overall energy consumption. When the pretreatment reaction is conducted at 130 degrees C with a raw material to water mass ratio of 1:3, energy consumption can be optimized to 0.2140 t/t. With the adoption of reaction liquid recycling, energy consumption can be further reduced to 0.1763 t/t. This paper outlined a pathway for the integrated utilization of lignocellulose, facilitating the feasibility of engineering calculations for biorefinery processes.
引用
收藏
页数:13
相关论文
共 42 条
[1]  
Arts W, 2023, ENERG ENVIRON SCI, V16, P2518, DOI [10.1039/d3ee00965c, 10.1039/D3EE00965C]
[2]   Techno-economic analysis and life cycle assessment of a biorefinery utilizing reductive catalytic fractionation [J].
Bartling, Andrew W. ;
Stone, Michael L. ;
Hanes, Rebecca J. ;
Bhatt, Arpit ;
Zhang, Yimin ;
Biddy, Mary J. ;
Davis, Ryan ;
Kruger, Jacob S. ;
Thornburg, Nicholas E. ;
Luterbacher, Jeremy S. ;
Rinaldi, Roberto ;
Samec, Joseph S. M. ;
Sels, Bert F. ;
Roman-Leshkov, Yuriy ;
Beckham, Gregg T. .
ENERGY & ENVIRONMENTAL SCIENCE, 2021, 14 (08) :4147-4168
[3]   Techno-economic analysis of inulooligosaccharides, protein, and biofuel co-production from Jerusalem artichoke tubers: A biorefinery approach [J].
Bedzo, Oscar K. K. ;
Mandegari, Mohsen ;
Gorgens, Johann F. .
BIOFUELS BIOPRODUCTS & BIOREFINING-BIOFPR, 2020, 14 (04) :776-793
[4]   Reductive Catalytic Fractionation of Wheat Straw Biomass [J].
Brienza, Filippo ;
Van Aelst, Korneel ;
Devred, Francois ;
Magnin, Delphine ;
Sels, Bert F. ;
Gerin, Patrick A. ;
Cybulska, Iwona ;
Debecker, Damien P. .
ACS SUSTAINABLE CHEMISTRY & ENGINEERING, 2022, 10 (34) :11130-11142
[5]   Pyrolysis characteristics of tea oil camellia (Camellia oleifera Abel.) shells and their chemically pre-treated residues: Kinetics, mechanisms, product evaluation and joint optimization [J].
Chen, Peijun ;
Hu, Chuanshuang ;
Gu, Jin ;
Lin, Xiuyi ;
Yang, Chongling ;
Leu, Shao-Yuan ;
Guan, Litao .
JOURNAL OF ANALYTICAL AND APPLIED PYROLYSIS, 2022, 164
[6]   The Future Biorefinery: The Impact of Upscaling the Reductive Catalytic Fractionation of Lignocellulose Biomass on the Quality of the Lignin Oil, Carbohydrate Products, and Pulp [J].
Cooreman, E. ;
Nicolai, T. ;
Arts, W. ;
Van Aelst, K. ;
Vangeel, T. ;
Van den Bosch, S. ;
Van Aelst, J. ;
Lagrain, B. ;
Thiele, K. ;
Thevelein, J. ;
Sels, Bert F. .
ACS SUSTAINABLE CHEMISTRY & ENGINEERING, 2023, 11 (14) :5440-5450
[7]   Perspective on Overcoming Scale-Up Hurdles for the Reductive Catalytic Fractionation of Lignocellulose Biomass [J].
Cooreman, Elias ;
Vangeel, Thijs ;
Van Aelst, Korneel ;
Van Aelst, Joost ;
Lauwaert, Jeroen ;
Thybaut, Joris W. ;
Van den Bosch, Sander ;
Sels, Bert F. .
INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH, 2020, 59 (39) :17035-17045
[8]   Renewable platform chemicals from directional microwave-assisted liquefaction coupling stepwise extraction of waste biomass [J].
Feng, Junfeng ;
Hse, Chungyun ;
Yang, Zhongzhi ;
Wang, Kui ;
Jiang, Jianchun ;
Xu, Junming .
BIORESOURCE TECHNOLOGY, 2017, 244 :496-508
[9]   Insights into the reaction network and kinetics of xylose conversion over combined Lewis/Bronsted acid catalysts in a flow microreactor [J].
Guo, Wenze ;
Bruining, Herman Carolus ;
Heeres, Hero Jan ;
Yue, Jun .
GREEN CHEMISTRY, 2023, 25 (15) :5878-5898
[10]   Promoting Effect of Sodium Chloride on the Solubilization and Depolymerization of Cellulose from Raw Biomass Materials in Water [J].
Jiang, Zhicheng ;
Yi, Jian ;
Li, Jianmei ;
He, Ting ;
Hu, Changwei .
CHEMSUSCHEM, 2015, 8 (11) :1901-1907