Applications of Transformers in Computational Chemistry: Recent Progress and Prospects

被引:2
作者
Wang, Rui [1 ]
Ji, Yujin [2 ]
Li, Youyong [1 ,2 ]
Lee, Shuit-Tong [1 ,2 ]
机构
[1] Macau Univ Sci & Technol, Macao Inst Mat Sci & Engn, Fac Innovat Engn, Taipa 999078, Macao, Peoples R China
[2] Soochow Univ, Inst Funct Nano & Soft Mat FUNSOM, Jiangsu Key Lab Carbon Based Funct Mat & Devices, Suzhou 215123, Jiangsu, Peoples R China
基金
中国国家自然科学基金;
关键词
LANGUAGE; PREDICTION; SMILES;
D O I
10.1021/acs.jpclett.4c03128
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The powerful data processing and pattern recognition capabilities of machine learning (ML) technology have provided technical support for the innovation in computational chemistry. Compared with traditional ML and deep learning (DL) techniques, transformers possess fine-grained feature-capturing abilities, which are able to efficiently and accurately model the dependencies of long-sequence data, simulate complex and diverse chemical spaces, and explore the computational logic behind the data. In this Perspective, we provide an overview of the application of transformer models in computational chemistry. We first introduce the working principle of transformer models and analyze the transformer-based architectures in computational chemistry. Next, we explore the practical applications of the model in a number of specific scenarios such as property prediction and chemical structure generation. Finally, based on these applications and research results, we provide an outlook for the research of this field in the future.
引用
收藏
页码:421 / 434
页数:14
相关论文
共 106 条
[1]   MTMol-GPT: De novo multi-target molecular generation with transformer-based generative adversarial imitation learning [J].
Ai, Chengwei ;
Yang, Hongpeng ;
Liu, Xiaoyi ;
Dong, Ruihan ;
Ding, Yijie ;
Guo, Fei .
PLOS COMPUTATIONAL BIOLOGY, 2024, 20 (06)
[2]   Integrating transformers and many-objective optimization for drug design [J].
Aksamit, Nicholas ;
Hou, Jinqiang ;
Li, Yifeng ;
Ombuki-Berman, Beatrice .
BMC BIOINFORMATICS, 2024, 25 (01)
[3]   MolGPT: Molecular Generation Using a Transformer-Decoder Model [J].
Bagal, Viraj ;
Aggarwal, Rishal ;
Vinod, P. K. ;
Priyakumar, U. Deva .
JOURNAL OF CHEMICAL INFORMATION AND MODELING, 2022, 62 (09) :2064-2076
[4]   Regression Transformer enables concurrent sequence regression and generation for molecular language modelling [J].
Born, Jannis ;
Manica, Matteo .
NATURE MACHINE INTELLIGENCE, 2023, 5 (04) :432-+
[5]   Transformer-based protein generation with regularized latent space optimization [J].
Castro, Egbert ;
Godavarthi, Abhinav ;
Rubinfien, Julian ;
Givechian, Kevin ;
Bhaskar, Dhananjay ;
Krishnaswamy, Smita .
NATURE MACHINE INTELLIGENCE, 2022, 4 (10) :840-851
[6]  
Chaudhari A., 2024, ARXIV, DOI DOI 10.48550/ARXIV.2403.19783
[7]   TransformerCPI: improving compound-protein interaction prediction by sequence-based deep learning with self-attention mechanism and label reversal experiments [J].
Chen, Lifan ;
Tan, Xiaoqin ;
Wang, Dingyan ;
Zhong, Feisheng ;
Liu, Xiaohong ;
Yang, Tianbiao ;
Luo, Xiaomin ;
Chen, Kaixian ;
Jiang, Hualiang ;
Zheng, Mingyue .
BIOINFORMATICS, 2020, 36 (16) :4406-4414
[8]  
Chen Y., 2024, ARXIV, DOI DOI 10.48550/ARXIV.2408.07608
[9]   BartSmiles: Generative Masked Language Models for Molecular Representations [J].
Chilingaryan, Gayane ;
Tamoyan, Hovhannes ;
Tevosyan, Ani ;
Babayan, Nelly ;
Hambardzumyan, Karen ;
Navoyan, Zaven ;
Aghajanyan, Armen ;
Khachatrian, Hrant ;
Khondkaryan, Lusine .
JOURNAL OF CHEMICAL INFORMATION AND MODELING, 2024, 64 (15) :5832-5843
[10]  
Chithrananda S., 2020, ARXIV, p2010.09885v2, DOI [10.48550/arXiv.2010.09885, DOI 10.48550/ARXIV.2010.09885]