Gas pore-based fatigue strength and fatigue life prediction models of laser additive manufactured Ti-6Al-4V alloy in very high cycle fatigue regime

被引:3
|
作者
Sun, Guanze [1 ]
Zheng, Jianwen [1 ]
Zhao, Zihua [1 ]
机构
[1] Beihang Univ, Sch Mat Sci & Engn, Beijing 100191, Peoples R China
来源
MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING | 2025年 / 922卷
基金
中国国家自然科学基金;
关键词
VHCF; Laser additive manufactured; Gas pore defect; Low fatigue stress sensitivity; Life prediction; CRACK INITIATION; MECHANICAL-PROPERTIES; TITANIUM-ALLOY; GIGACYCLE FATIGUE; STRESS RATIO; BEHAVIOR; MICROSTRUCTURE; GROWTH; FAILURE; TENSILE;
D O I
10.1016/j.msea.2024.147640
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Due to the high-density energy input characteristics of laser additive manufacturing (AM), gas pores are often as high-frequency defects in additive manufacturing materials, which makes the long-life fatigue service of structures have potential safety hazards. However, the fatigue researches on AM materials mostly focus on the lack of fusion (LoF) defect induced damage. Therefore, we propose an idea whether we can customize an AM alloy only with pore defects, and explore the very high cycle fatigue behavior. Ti-6Al-4V alloy are widely used in aerospace key components, and the research in additive manufacturing is relatively in-depth. Here, we selected laser additive manufactured Ti-6Al-4V alloy as the model material for ultrasonic fatigue test, and carried out defect tomography reconstruction, defect stress field simulation, and fracture quantitative analysis. Based on this, we introduce a low fatigue stress sensitivity coefficient to modify Murakami 's fatigue strength prediction model, and control the prediction ability within the error range of 10 %. Meanwhile, considering the location, size and shape of the pores, the T parameter was established, and the Schmid factor was introduced in combination with the microstructure cracking near the pores, so that the FIP model was optimized, making the predicted lives distribution within 2 times line of actual lives.
引用
收藏
页数:16
相关论文
共 50 条
  • [31] Crack initiation mechanisms under two stress ratios up to very-high-cycle fatigue regime for a selective laser melted Ti-6Al-4V
    Du, Leiming
    Pan, Xiangnan
    Qian, Guian
    Zheng, Liang
    Hong, Youshi
    INTERNATIONAL JOURNAL OF FATIGUE, 2021, 149
  • [32] The effect of microstructure on very high cycle fatigue properties in Ti-6Al-4V
    Oguma, H.
    Nakamura, T.
    SCRIPTA MATERIALIA, 2010, 63 (01) : 32 - 34
  • [33] Effects of TiN coating on the high-cycle-fatigue and very-high-cycle-fatigue properties of Ti-6Al-4V alloy
    Lu, Kaiju
    Cheng, Li
    Chen, Xuan
    INTERNATIONAL JOURNAL OF MATERIALS RESEARCH, 2019, 110 (04) : 307 - 316
  • [34] High cycle fatigue and fatigue crack propagation behaviors of β-annealed Ti-6Al-4V alloy
    Jeong D.
    Kwon Y.
    Goto M.
    Kim S.
    International Journal of Mechanical and Materials Engineering, 2017, 12 (1)
  • [35] Effect of surface treatment on the fatigue strength of additive manufactured Ti6Al4V alloy
    Navarro, Carlos
    Vazquez, Jesus
    Dominguez, Jaime
    Perinan, Antonio
    Herrera Garcia, Marta
    Lasagni, Fernando
    Bernarding, Simon
    Slawik, Sebastian
    Muecklich, Frank
    Boby, Francisco
    Hackel, Lloyd
    FRATTURA ED INTEGRITA STRUTTURALE, 2020, 14 (53): : 337 - 344
  • [36] Probabilistic fatigue-life assessment model for laser-welded Ti-6Al-4V butt joints in the high-cycle fatigue regime
    Fomin, Fedor
    Horstmann, Manfred
    Huber, Norbert
    Kashaev, Nikolai
    INTERNATIONAL JOURNAL OF FATIGUE, 2018, 116 : 22 - 35
  • [37] Fatigue in Ti-6Al-4V at very high cycles
    Cao, X. J.
    Sriraman, M. R.
    Wang, Q. Y.
    PRICM 6: SIXTH PACIFIC RIM INTERNATIONAL CONFERENCE ON ADVANCED MATERIALS AND PROCESSING, PTS 1-3, 2007, 561-565 : 259 - 262
  • [38] Very high-cycle fatigue behaviour of Ti-6Al-4V alloy under corrosive environment
    Zhao, P. -C.
    Li, S. -X.
    Jia, Y. -F.
    Zhang, C. -C.
    Zhang, X. -C.
    Tu, S. -T.
    FATIGUE & FRACTURE OF ENGINEERING MATERIALS & STRUCTURES, 2018, 41 (04) : 881 - 893
  • [39] Influence of processing parameters of selective laser melting on high-cycle and very-high-cycle fatigue behaviour of Ti-6Al-4V
    Du, Leiming
    Qian, Guian
    Zheng, Liang
    Hong, Youshi
    FATIGUE & FRACTURE OF ENGINEERING MATERIALS & STRUCTURES, 2021, 44 (01) : 240 - 256
  • [40] X-ray imaging of defect population and the effect on high cycle fatigue life of laser additive manufactured Ti6Al4V alloys
    Gao, Xiangxi
    Tao, Chunhu
    Wu, Shengchuan
    Chen, Bingqing
    Wu, Sujun
    INTERNATIONAL JOURNAL OF FATIGUE, 2022, 162