A 2-level approach for the set covering problem: Parameter tuning of artificial bee colony algorithm by using genetic algorithm

被引:5
作者
Crawford, Broderick [1 ,2 ]
Soto, Ricardo [1 ,3 ]
Palma, Wenceslao [1 ]
Johnson, Franklin [4 ]
Paredes, Fernando [5 ]
Olguín, Eduardo [6 ]
机构
[1] Pontificia Universidad Católica de Valparaíso, Chile
[2] Universidad Finis Terrae, Chile
[3] Universidad Autónoma de Chile, Chile
[4] Universidad de Playa Ancha, Chile
[5] Universidad Diego Portales, Chile
[6] Universidad San Sebastián, Chile
来源
Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) | 2014年 / 8794卷
关键词
Artificial Bee Colony Algorithm; Genetic Algorithm; Parameter Setting; Set Covering Problem; Swarm Intelligence;
D O I
10.1007/978-3-319-11857-4_22
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
We present a novel application of the Artificial Bee Colony algorithm to solve the non-unicost Set Covering Problem. The Artificial Bee Colony algorithm is a recent Swarm Metaheuristic technique based on the intelligent foraging behavior of honey bees. We present a 2-level metaheuristic approach where an Artificial Bee Colony Algorithm acts as a low-level metaheuristic and its paremeters are set by a higher level Genetic Algorithm.3 © 2014 Springer International Publishing Switzerland.
引用
收藏
页码:189 / 196
页数:7
相关论文
共 11 条
[1]  
Crawford B., Soto R., Cuesta R., Paredes F., Application of the artificial bee colony algorithm for solving the set covering problem, The Scientific World Journal, 2014, pp. 1-8, (2014)
[2]  
Crawford B., Soto R., Monfroy E., Castro C., Palma W., Paredes F., A hybrid soft computing approach for subset problems, Mathematical Problems in Engineering, 2013, pp. 1-12, (2013)
[3]  
Crawford B., Soto R., Monfroy E., Cultural algorithms for the set covering problem., ICSI 2013, 7929, pp. 27-34, (2013)
[4]  
Crawford B., Valenzuela C., Soto R., Monfroy E., Paredes F., Parameter tuning of metaheuristics using metaheuristics. Advanced Science Letters 19(12), pp. 3556-3559, (2013)
[5]  
Feo T.A., Resende M.G.C., A probabilistic heuristic for a computationally difficult set covering problem, Operations Research Letters, 8, 2, pp. 67-71, (1989)
[6]  
Karaboga D., An idea based on honey bee swarm for numerical optimization. Technical Report TR06. Computer Engineering Department, (2005)
[7]  
Karaboga D., Basturk B., A powerful and efficient algorithm for numerical function optimization: Artificial bee colony (abc) algorithm, J. Global Optimization, 39, 3, pp. 459-471, (2007)
[8]  
Karp R.M., Reducibility among combinatorial problems., Complexity of Computer Computations. The IBM Research Symposia Series, pp. 85-103, (1972)
[9]  
Ren Z.G., Feng Z.R., Ke L.J., Zhang Z.J., New ideas for applying ant colony optimization to the set covering problem. Computers & Industrial Engineering 58(4), pp. 774-784, (2010)
[10]  
Singh A., An artificial bee colony algorithm for the leaf-constrained minimum spanning tree problem. Appl. Soft Comput. 9(2), pp. 625-631, (2009)