UNIFORM WEAK SHARP MINIMA FOR MULTIOBJECTIVE OPTIMIZATION PROBLEMS

被引:0
作者
Hu, Chunhai [1 ]
Yang, Xiaoqi [2 ]
Zheng, Xi yin [3 ]
机构
[1] Yunnan Univ, Dept Math, Kunming 650091, Peoples R China
[2] Hong Kong Polytech Univ, Dept Appl Math, Hong Kong, Peoples R China
[3] Yunnan Univ, Dept Math, Kunming 650091, Peoples R China
关键词
multiobjective optimization; uniform weak sharp minima; polyhedron; ERROR-BOUNDS; EFFICIENCY; ALGORITHM; SET;
D O I
10.1137/23M1628012
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Noting that there exist abnormal phenomena in the existing weak sharp minima for for the multiobjective optimization problem. We first provide several characterizations for a piecewise linear multiobjective optimization problem with respect to the natural vector partial order induced by \BbbR n +to have uniform weak sharp minima. Under a mild assumption, a piecewise linear multiobjective optimization problem with respect to an arbitrary vector partial order is proved to be equivalent to a piecewise linear multiobjective optimization problem with respect to the natural vector partial order. Based on such an interesting equivalence, this paper mainly establishes the uniform bounded and global weak sharp minima for a general piecewise linear multiobjective optimization problem with respect to any vector partial order.
引用
收藏
页码:3699 / 3722
页数:24
相关论文
共 42 条
  • [1] Arrow K.J., 1953, CONTRIBUTIONS THEORY, V2, P87
  • [2] Proximal methods in vector optimization
    Bonnel, H
    Iusem, AN
    Svaiter, BF
    [J]. SIAM JOURNAL ON OPTIMIZATION, 2005, 15 (04) : 953 - 970
  • [3] SUPER EFFICIENCY IN VECTOR OPTIMIZATION
    BORWEIN, JM
    ZHUANG, D
    [J]. TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1993, 338 (01) : 105 - 122
  • [4] WEAK SHARP MINIMA IN MATHEMATICAL-PROGRAMMING
    BURKE, JV
    FERRIS, MC
    [J]. SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 1993, 31 (05) : 1340 - 1359
  • [5] Trust region globalization strategy for the nonconvex unconstrained multiobjective optimization problem
    Carrizo, Gabriel A.
    Lotito, Pablo A.
    Maciel, Maria C.
    [J]. MATHEMATICAL PROGRAMMING, 2016, 159 (1-2) : 339 - 369
  • [6] SOLVING MULTIOBJECTIVE MIXED INTEGER CONVEX OPTIMIZATION PROBLEMS
    De Santis, Marianna
    Eichfelder, Gabriele
    Niebling, Julia
    Rocktaeschel, Stefan
    [J]. SIAM JOURNAL ON OPTIMIZATION, 2020, 30 (04) : 3122 - 3145
  • [7] An Evolutionary Many-Objective Optimization Algorithm Using Reference-Point-Based Nondominated Sorting Approach, Part I: Solving Problems With Box Constraints
    Deb, Kalyanmoy
    Jain, Himanshu
    [J]. IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, 2014, 18 (04) : 577 - 601
  • [8] Weak sharp minima in multicriteria linear programming
    Deng, S
    Yang, XQ
    [J]. SIAM JOURNAL ON OPTIMIZATION, 2005, 15 (02) : 456 - 460
  • [9] Existence of efficient and properly efficient solutions to problems of constrained vector optimization
    Do Sang Kim
    Mordukhovich, Boris S.
    Tien-Son Pham
    Nguyen Van Tuyen
    [J]. MATHEMATICAL PROGRAMMING, 2021, 190 (1-2) : 259 - 283
  • [10] Dontchev AL, 2009, SPRINGER MONOGR MATH, P1, DOI 10.1007/978-0-387-87821-8_1