Anomaly Detection of Cyber Attacks in Smart Grid Communications Based on Residual Recurrent Neural Networks

被引:0
|
作者
Yu, Long [1 ]
Zhang, Xirun [1 ]
Du, Lishi [1 ]
Yue, Liang [1 ]
机构
[1] Fibrlink Commun Co Ltd, Beijing, Peoples R China
来源
SECURITY AND PRIVACY | 2025年 / 8卷 / 01期
关键词
anomaly detection; communication network; cyber attack; smart grid;
D O I
10.1002/spy2.498
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
The smart grid consists of widely distributed devices, and the complex, multitiered communication network structure increases its vulnerability to attacks. Attackers can exploit communication vulnerabilities between layers to launch network attacks. To optimize communication among smart grid devices and improve the accuracy of detecting network anomalies, this article proposes a deep learning-based method for detecting communication network anomalies in power grid devices. Data from standard sources, such as smart meters, are collected, and the modified flow direction algorithm (MFDA) is employed for optimal weighted feature selection. The selected features are then input into an adaptive residual recurrent neural network (ARRNN) with dilated gated recurrent units (DGRUs) for anomaly detection, improving the accuracy of abnormal traffic monitoring in the smart grid. Simulation results show significant improvements in key performance indicators, with the false discovery rate (FDR) reduced to 0.060, the Matthews correlation coefficient (MCC) reaching 0.881, and specificity, recall, and precision all at 0.940. Large-scale data experiments demonstrate outstanding performance in terms of memory usage, computational speed, and latency. This method proves to be effective and robust for communication anomaly detection in power grid networks.
引用
收藏
页数:12
相关论文
共 50 条
  • [21] Toward Resilient Smart Grid Communications Using Distributed SDN with ML-Based Anomaly Detection
    Starke, Allen
    McNair, Janise
    Trevizan, Rodrigo
    Bretas, Arturo
    Peeples, Joshua
    Zare, Alina
    WIRED/WIRELESS INTERNET COMMUNICATIONS (WWIC 2018), 2018, 10866 : 83 - 94
  • [22] Real-Time Detection of Hybrid and Stealthy Cyber-Attacks in Smart Grid
    Kurt, Mehmet Necip
    Yilmaz, Yasin
    Wang, Xiaodong
    IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, 2019, 14 (02) : 498 - 513
  • [23] Multipath neural networks for anomaly detection in cyber-physical systems
    Larsen, Raphael M. J., I
    Pahl, Marc-Oliver
    Coatrieux, Gouenou
    ANNALS OF TELECOMMUNICATIONS, 2023, 78 (3-4) : 149 - 167
  • [24] Multipath neural networks for anomaly detection in cyber-physical systems
    Raphaël M. J. I. Larsen
    Marc-Oliver Pahl
    Gouenou Coatrieux
    Annals of Telecommunications, 2023, 78 : 149 - 167
  • [25] DDOA: A Dirichlet-Based Detection Scheme for Opportunistic Attacks in Smart Grid Cyber-Physical System
    Li, Beibei
    Lu, Rongxing
    Wang, Wei
    Choo, Kim-Kwang Raymond
    IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, 2016, 11 (11) : 2415 - 2425
  • [26] Auditory Anomaly Detection using Recurrent Spiking Neural Networks
    Kshirasagar, Shreya
    Cramer, Benjamin
    Guntoro, Andre
    Mayr, Christian
    2024 IEEE 6TH INTERNATIONAL CONFERENCE ON AI CIRCUITS AND SYSTEMS, AICAS 2024, 2024, : 278 - 281
  • [27] Accurate Automata-Based Detection of Cyber Threats in Smart Grid Communication
    Havlena, Vojtech
    Matousek, Petr
    Rysavy, Ondrej
    Holik, Lukas
    IEEE TRANSACTIONS ON SMART GRID, 2023, 14 (03) : 2352 - 2366
  • [28] Artificial Intelligence and Physics-Based Anomaly Detection in the Smart Grid: A Survey
    Gaggero, Giovanni Battista
    Girdinio, Paola
    Marchese, Mario
    IEEE ACCESS, 2025, 13 : 23597 - 23606
  • [29] Ensemble Voting-Based Anomaly Detection for a Smart Grid Communication Infrastructure
    Alshede, Hend
    Nassef, Laila
    Alowidi, Nahed
    Fadel, Etimad
    INTELLIGENT AUTOMATION AND SOFT COMPUTING, 2023, 36 (03) : 3257 - 3278
  • [30] Smart Grid Communication Network Traffic Anomaly Detection Based on Entropy Analysis
    Ruo, Xuesong
    Lv, Chao
    Pei, Pei
    Gao, Minghui
    Wang, Liming
    2016 2ND IEEE INTERNATIONAL CONFERENCE ON COMPUTER AND COMMUNICATIONS (ICCC), 2016, : 1082 - 1086