Anomaly Detection of Cyber Attacks in Smart Grid Communications Based on Residual Recurrent Neural Networks

被引:0
|
作者
Yu, Long [1 ]
Zhang, Xirun [1 ]
Du, Lishi [1 ]
Yue, Liang [1 ]
机构
[1] Fibrlink Commun Co Ltd, Beijing, Peoples R China
来源
SECURITY AND PRIVACY | 2025年 / 8卷 / 01期
关键词
anomaly detection; communication network; cyber attack; smart grid;
D O I
10.1002/spy2.498
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
The smart grid consists of widely distributed devices, and the complex, multitiered communication network structure increases its vulnerability to attacks. Attackers can exploit communication vulnerabilities between layers to launch network attacks. To optimize communication among smart grid devices and improve the accuracy of detecting network anomalies, this article proposes a deep learning-based method for detecting communication network anomalies in power grid devices. Data from standard sources, such as smart meters, are collected, and the modified flow direction algorithm (MFDA) is employed for optimal weighted feature selection. The selected features are then input into an adaptive residual recurrent neural network (ARRNN) with dilated gated recurrent units (DGRUs) for anomaly detection, improving the accuracy of abnormal traffic monitoring in the smart grid. Simulation results show significant improvements in key performance indicators, with the false discovery rate (FDR) reduced to 0.060, the Matthews correlation coefficient (MCC) reaching 0.881, and specificity, recall, and precision all at 0.940. Large-scale data experiments demonstrate outstanding performance in terms of memory usage, computational speed, and latency. This method proves to be effective and robust for communication anomaly detection in power grid networks.
引用
收藏
页数:12
相关论文
共 50 条
  • [1] Anomaly detection in smart grid based on encoder-decoder framework with recurrent neural network
    Zheng Fengming
    Li Shufang
    Guo Zhimin
    Wu Bo
    Tian Shiming
    Pan Mingming
    The Journal of China Universities of Posts and Telecommunications, 2017, (06) : 67 - 73
  • [2] Smart Grid Anomaly Detection Using MFDA and Dilated GRU-based Neural Networks
    Ravinder, Mudavath
    Kulkarni, Vikram
    SMART GRIDS AND SUSTAINABLE ENERGY, 2025, 10 (01)
  • [3] Anomaly Detection in Cyber Physical Systems using Recurrent Neural Networks
    Goh, Jonathan
    Adepu, Sridhar
    Tan, Marcus
    Shan, Lee Zi
    2017 IEEE 18TH INTERNATIONAL SYMPOSIUM ON HIGH ASSURANCE SYSTEMS ENGINEERING (HASE 2017), 2017, : 140 - 145
  • [4] Wireless Sensor Network Based Smart Grid Communications: Cyber Attacks, Intrusion Detection System and Topology Control
    Chhaya, Lipi
    Sharma, Paawan
    Bhagwatikar, Govind
    Kumar, Adesh
    ELECTRONICS, 2017, 6 (01)
  • [5] Distributed Quickest Detection of Cyber-Attacks in Smart Grid
    Kurt, Mehmet Necip
    Yilmaz, Yasin
    Wang, Xiaodong
    IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, 2018, 13 (08) : 2015 - 2030
  • [6] Cyber Attacks Detection using Machine Learning in Smart Grid Systems
    Gyawali, Sohan
    Beg, Omar
    IEEE INFOCOM 2022 - IEEE CONFERENCE ON COMPUTER COMMUNICATIONS WORKSHOPS (INFOCOM WKSHPS), 2022,
  • [7] Protection of a smart grid with the detection of cyber- malware attacks using efficient and novel machine learning models
    Aziz, Saddam
    Irshad, Muhammad
    Haider, Sami Ahmed
    Wu, Jianbin
    Deng, Ding Nan
    Ahmad, Sadiq
    FRONTIERS IN ENERGY RESEARCH, 2022, 10
  • [8] Detection of False Data Injection Attacks in Smart Grids using Recurrent Neural Networks
    Ayad, Abdelrahman
    Farag, Hany E. Z.
    Youssef, Amr
    El-Saadany, Ehab F.
    2018 IEEE POWER & ENERGY SOCIETY INNOVATIVE SMART GRID TECHNOLOGIES CONFERENCE (ISGT), 2018,
  • [9] Detecting Cyber Attacks in Smart-Grid Networks with Probability Distribution Comparison
    Barsha, Nisha Kumari
    Hubballi, Neminath
    2024 IEEE 21ST CONSUMER COMMUNICATIONS & NETWORKING CONFERENCE, CCNC, 2024, : 648 - 649
  • [10] Salp Swarm-Artificial Neural Network Based Cyber-Attack Detection in Smart Grid
    Arifa Sultana
    Aroop Bardalai
    Kandarpa Kumar Sarma
    Neural Processing Letters, 2022, 54 : 2861 - 2883