A survey of deep learning algorithms for colorectal polyp segmentation

被引:3
作者
Li, Sheng [1 ]
Ren, Yipei [1 ]
Yu, Yulin [1 ]
Jiang, Qianru [1 ]
He, Xiongxiong [1 ]
Li, Hongzhang [2 ]
机构
[1] Zhejiang Univ Technol, Coll Informat Engn, Hangzhou 310014, Zhejiang, Peoples R China
[2] Sanmen Cty Peoples Hosp, Taizhou 317100, Zhejiang, Peoples R China
基金
中国国家自然科学基金;
关键词
Colorectal polyp; Neural networks; Deep learning; Polyp segmentation; Computer intelligent segmentation; NEURAL-NETWORKS; VALIDATION;
D O I
10.1016/j.neucom.2024.128767
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Early detecting and removing cancerous colorectal polyps can effectively reduce the risk of colorectal cancer. Computer intelligent segmentation techniques (CIST) can improve the detection rate of polyp by drawing the boundaries of colorectal polyps clearly and completely. Four challenges that encountered in deep learning methods for the task of colorectal polyp segmentation are considered, including the limitations of classical deep learning (DL) algorithms, the impact of data set quantity and quality, the diversity of intrinsic characteristics of lesions and the heterogeneity of images in different center datasets. The improved DL algorithms for intelligent polyp segmentation are detailed along with the key neural network modules being designed to deal with above challenges. In addition, the public and private datasets of colorectal polyp images and videos are summarized, respectively. At the end of this paper, the development trends of polyp segmentation algorithm based on deep learning are discussed.
引用
收藏
页数:16
相关论文
共 122 条
[1]   Assessing generalisability of deep learning-based polyp detection and segmentation methods through a computer vision challenge [J].
Ali, Sharib ;
Ghatwary, Noha ;
Jha, Debesh ;
Isik-Polat, Ece ;
Polat, Gorkem ;
Yang, Chen ;
Li, Wuyang ;
Galdran, Adrian ;
Ballester, Miguel-Angel Gonzalez ;
Thambawita, Vajira ;
Hicks, Steven ;
Poudel, Sahadev ;
Lee, Sang-Woong ;
Jin, Ziyi ;
Gan, Tianyuan ;
Yu, Chenghui ;
Yan, Jiangpeng ;
Yeo, Doyeob ;
Lee, Hyunseok ;
Tomar, Nikhil Kumar ;
Haithami, Mahmood ;
Ahmed, Amr ;
Riegler, Michael A. ;
Daul, Christian ;
Halvorsen, Pal ;
Rittscher, Jens ;
Salem, Osama E. ;
Lamarque, Dominique ;
Cannizzaro, Renato ;
Realdon, Stefano ;
de Lange, Thomas ;
East, James E. .
SCIENTIFIC REPORTS, 2024, 14 (01)
[2]   Towards Real-Time Polyp Detection in Colonoscopy Videos: Adapting Still Frame-Based Methodologies for Video Sequences Analysis [J].
Angermann, Quentin ;
Bernal, Jorge ;
Sanchez-Montes, Cristina ;
Hammami, Maroua ;
Fernandez-Esparrach, Gloria ;
Dray, Xavier ;
Romain, Olivier ;
Javier Sanchez, F. ;
Histace, Aymeric .
COMPUTER ASSISTED AND ROBOTIC ENDOSCOPY AND CLINICAL IMAGE-BASED PROCEDURES, 2017, 10550 :29-41
[3]   SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation [J].
Badrinarayanan, Vijay ;
Kendall, Alex ;
Cipolla, Roberto .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2017, 39 (12) :2481-2495
[4]   Prospective Blinded Comparison of Polyp Size on Computed Tomography Colonography and Endoscopic Colonoscopy [J].
Barancin, Courtney ;
Pickhardt, Perry J. ;
Kim, David H. ;
Spier, Bret ;
Lindstrom, Mary ;
Reichelderfer, Mark ;
Gopal, Deepak ;
Pfau, Patrick .
CLINICAL GASTROENTEROLOGY AND HEPATOLOGY, 2011, 9 (05) :443-445
[5]   Towards automatic polyp detection with a polyp appearance model [J].
Bernal, J. ;
Sanchez, J. ;
Vilarino, F. .
PATTERN RECOGNITION, 2012, 45 (09) :3166-3182
[6]   Comparative Validation of Polyp Detection Methods in Video Colonoscopy: Results From the MICCAI 2015 Endoscopic Vision Challenge [J].
Bernal, Jorge ;
Tajkbaksh, Nima ;
Sanchez, Francisco Javier ;
Matuszewski, Bogdan J. ;
Chen, Hao ;
Yu, Lequan ;
Angermann, Quentin ;
Romain, Olivier ;
Rustad, Bjorn ;
Balasingham, Ilangko ;
Pogorelov, Konstantin ;
Choi, Sungbin ;
Debard, Quentin ;
Maier-Hein, Lena ;
Speidel, Stefanie ;
Stoyanov, Danail ;
Brandao, Patrick ;
Cordova, Henry ;
Sanchez-Montes, Cristina ;
Gurudu, Suryakanth R. ;
Fernandez-Esparrach, Gloria ;
Dray, Xavier ;
Liang, Jianming ;
Histace, Aymeric .
IEEE TRANSACTIONS ON MEDICAL IMAGING, 2017, 36 (06) :1231-1249
[7]   WM-DOVA maps for accurate polyp highlighting in colonoscopy: Validation vs. saliency maps from physicians [J].
Bernal, Jorge ;
Javier Sanchez, F. ;
Fernandez-Esparrach, Gloria ;
Gil, Debora ;
Rodriguez, Cristina ;
Vilarino, Fernando .
COMPUTERIZED MEDICAL IMAGING AND GRAPHICS, 2015, 43 :99-111
[8]   HyperKvasir, a comprehensive multi-class image and video dataset for gastrointestinal endoscopy [J].
Borgli, Hanna ;
Thambawita, Vajira ;
Smedsrud, Pia H. ;
Hicks, Steven ;
Jha, Debesh ;
Eskeland, Sigrun L. ;
Randel, Kristin Ranheim ;
Pogorelov, Konstantin ;
Lux, Mathias ;
Nguyen, Duc Tien Dang ;
Johansen, Dag ;
Griwodz, Carsten ;
Stensland, Hakon K. ;
Garcia-Ceja, Enrique ;
Schmidt, Peter T. ;
Hammer, Hugo L. ;
Riegler, Michael A. ;
Halvorsen, Pal ;
de Lange, Thomas .
SCIENTIFIC DATA, 2020, 7 (01)
[9]   Effect of Colonoscopy Screening on Risks of Colorectal Cancer and Related Death [J].
Bretthauer, M. ;
Loberg, M. ;
Wieszczy, P. ;
Kalager, M. ;
Emilsson, L. ;
Garborg, K. ;
Rupinski, M. ;
Dekker, E. ;
Spaander, M. ;
Bugajski, M. ;
Holme, O. ;
Zauber, A. G. ;
Pilonis, N. D. ;
Mroz, A. ;
Kuipers, E. J. ;
Shi, J. ;
Hernan, M. A. ;
Adami, H-O ;
Regula, J. ;
Hoff, G. ;
Kaminski, M. F. .
NEW ENGLAND JOURNAL OF MEDICINE, 2022, 387 (17) :1547-1556
[10]   HarDNet: A Low Memory Traffic Network [J].
Chao, Ping ;
Kao, Chao-Yang ;
Ruan, Yu-Shan ;
Huang, Chien-Hsiang ;
Lin, Youn-Long .
2019 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV 2019), 2019, :3551-3560