Thermal fatigue behaviour of hot-work tool steels: Heat check nucleation and growth

被引:13
作者
Materials Center Leoben Forschung GmbH, Roseggerstrasse 12, 8700 Leoben, Austria [1 ]
不详 [2 ]
机构
[1] Materials Center Leoben Forschung GmbH, 8700 Leoben
[2] Boehler Edelstahl GmbH and Co KG, 8605 Kapfenberg
来源
Int. J. Microstruct. Mater. Prop. | 2008年 / 2-3卷 / 182-194期
关键词
D O I
10.1504/IJMMP.2008.018726
中图分类号
学科分类号
摘要
Cyclic thermal loading causes thermal gradients near the loaded surfaces, which are responsible for the development of cyclic strains and mechanical stresses in the sample that subsequently cause accumulated damage. The stress state changes during thermal fatigue loading if plastic strains occur. Most relevant are the formation of tensile stresses, which favour crack nucleation and crack growth, but thermal softening and cyclic softening also play an important role. The combined effect of microstructure, mechanical and physical properties on the thermal fatigue behaviour was studied by testing hot-work tool steels using a testing facility based on a pulsed laser beam. The results indicate that purely martensitic microstructures have a better thermal fatigue resistance than mixed martenitic/bainitic microstructures. High strength seems to be especially beneficial in cases with lower fatigue loads owing to thermal cycling. Higher thermal conductivity plays a beneficial role regarding the thermal fatigue resistance. Copyright © 2008, Inderscience Publishers.
引用
收藏
页码:182 / 194
页数:12
相关论文
共 18 条
[1]  
Berns H., Beispiele zur Schädigung von Warmarbeitswerkzeugen, Zeitschrift für Werkstoffe Wärmebehandlung Fertigung, 59, pp. 379-387, (2004)
[2]  
Caliskanogln D., Einflnss der Legierungslage auf das Anwendnngspotential temperaturwechselbeanspruchter Warmarbeitsstähle, (2002)
[3]  
Caliskanogln D., Siller I., Ebner R., Leitner H., Jeglitsch F., Waldhanser W., Thermal fatigue and softening behavior of hot work tool steels, Proc. 6th International Conference on Tooling, pp. 591-601, (2002)
[4]  
Delagnes D., Influence of temperature and initial hardness on fatigue behavionr and life of a 5%Cr hot work tool steel, Proc. 5th International Conference on Tooling, pp. 195-204, (1999)
[5]  
Haddar N., Fissolo A., Maillot V., Thermal fatigue crack networks: An computational study, International Journal of Solids and Structures, 42, pp. 771-788, (2005)
[6]  
Hihara M., Mnkoyama Y., Measurements of residual stresses on aluminium die casting steels, Int. J. Jpn. Soc. Prec. Eng, 25, pp. 187-192, (1991)
[7]  
Hoffman A., Siller I., Ebner R., Werkstoffe für Problembereiche in Gusskokillen, GIESSEREI-RUNDSCHAU 50, pp. 117-122, (2003)
[8]  
Jean S., Miquel B., LeRoux S., Aria F.R., An investigation on heat checking of hot work tool steels, Proc. 5th Int. Conference on Tooling, pp. 185-193, (1999)
[9]  
Malm S., Norstrom L., Material-related model for thermal fatigue applied to tool steels in hot-work applications, Metal Science, pp. 544-550, (1979)
[10]  
Manson S.S., Thermal Stress and Low-cycle Fatigue, (1966)