Effect of Selective Enhancement on the Bending Performance of Fused Deposition Methods 3D-Printed PLA Models

被引:11
|
作者
Wang, Chen [1 ,2 ]
Yu, Jiahao [1 ,2 ]
Jiang, Minhan [1 ,2 ]
Li, Jingyao [1 ,2 ]
机构
[1] Nanjing Forestry Univ, Coll Furnishings & Ind Design, Nanjing 210037, Peoples R China
[2] Jiangsu Co Innovat Ctr Efficient Proc & Utilizat, Nanjing, Jiangsu, Peoples R China
来源
BIORESOURCES | 2024年 / 19卷 / 02期
关键词
Selective enhancement; FDM; PLA models; Bending performance; MECHANICAL-PROPERTIES;
D O I
10.15376/biores.19.2.2660-2669
中图分类号
TB3 [工程材料学]; TS [轻工业、手工业、生活服务业];
学科分类号
0805 ; 080502 ; 0822 ;
摘要
The top and bottom shells of fused deposition 3D-printed PLA models are exposed to the highest stresses. To improve the bending performance of PLA models under three-point bending conditions, the models were strengthened by a selective enhancement method. Several sets of PLA models were fabricated using FDM technology, and three-point bending experiments were conducted to compare the bending strength of PLA models when the layer height, top/bottom shell thickness, and extrusion rate were varied. The bending strength of the PLA models increased as the layer height of the top/bottom shell decreased, the thickness increased, and the extrusion rate increased. The average bending strength of the PLA models after selective enhancement was 84.4 MPa, and the average bending modulus of elasticity was 0.816 GPa, which were higher than the average bending strength of 68.6 MPa and the average bending modulus of elasticity of 0.736 GPa of the conventional groups. These results indicated that the selective enhancement method improved the bending performance of 3D-printed PLA models, and it also provided a reference for the improvement of the mechanical properties of the 3D-printed models with cellulose composite reinforced materials.
引用
收藏
页码:2660 / 2669
页数:10
相关论文
共 50 条
  • [1] Experimental investigation of fracture toughness of fused deposition modeling 3D-printed PLA parts
    Kizhakkinan U.
    Rosen D.W.
    Raghavan N.
    Materials Today: Proceedings, 2022, 70 : 631 - 637
  • [2] Effect of Printing Parameters on the Tensile Properties of 3D-Printed Polylactic Acid (PLA) Based on Fused Deposition Modeling
    Hsueh, Ming-Hsien
    Lai, Chao-Jung
    Chung, Cheng-Feng
    Wang, Shi-Hao
    Huang, Wen-Chen
    Pan, Chieh-Yu
    Zeng, Yu-Shan
    Hsieh, Chia-Hsin
    POLYMERS, 2021, 13 (14)
  • [3] Effect of Printing Parameters on the Thermal and Mechanical Properties of 3D-Printed PLA and PETG, Using Fused Deposition Modeling
    Hsueh, Ming-Hsien
    Lai, Chao-Jung
    Wang, Shi-Hao
    Zeng, Yu-Shan
    Hsieh, Chia-Hsin
    Pan, Chieh-Yu
    Huang, Wen-Chen
    POLYMERS, 2021, 13 (11)
  • [4] Investigation of Interlayer Interface Strength and Print Morphology Effects in Fused Deposition Modeling 3D-Printed PLA
    Perez, Daniel B.
    Celik, Emrah
    Karkkainen, Ryan L.
    3D PRINTING AND ADDITIVE MANUFACTURING, 2021, 8 (01) : 23 - 32
  • [5] Bending fatigue behavior of fused filament fabrication 3D-printed ABS and PLA joints with rotary friction welding
    Mohammad Sadegh Aghareb Parast
    Abbasali Bagheri
    Abdolvahed Kami
    Mohammad Azadi
    Vahid Asghari
    Progress in Additive Manufacturing, 2022, 7 : 1345 - 1361
  • [6] Bending fatigue behavior of fused filament fabrication 3D-printed ABS and PLA joints with rotary friction welding
    Parast, Mohammad Sadegh Aghareb
    Bagheri, Abbasali
    Kami, Abdolvahed
    Azadi, Mohammad
    Asghari, Vahid
    PROGRESS IN ADDITIVE MANUFACTURING, 2022, 7 (06) : 1345 - 1361
  • [7] Orientation Controls Tribological Performance of 3D-Printed PLA and ABS
    Mahmood, Samsul
    Guo, Emily
    Stirling, Amanda
    Schulze, Kyle D.
    TRIBOLOGY ONLINE, 2023, 18 (06): : 302 - 312
  • [8] 3D-printed PLA/HA composite structures as synthetic trabecular bone: A feasibility study using fused deposition modeling
    Wu, Dan
    Spanou, Andrea
    Diez-Escudero, Anna
    Persson, Cecilia
    JOURNAL OF THE MECHANICAL BEHAVIOR OF BIOMEDICAL MATERIALS, 2020, 103 (103)
  • [9] Electroosmotic flow in fused deposition modeling (FDM) 3D-printed microchannels
    Barbosa, Fabio Henrique Barros
    Quero, Reverson Fernandes
    Rocha, Kionnys Novaes
    Costa, Samuel Carvalho
    de Jesus, Dosil Pereira
    ELECTROPHORESIS, 2023, 44 (5-6) : 558 - 562
  • [10] Effect of infill patterns on the mechanical performance of lightweight 3D-printed cellular PLA parts
    Lubombo, Christian
    Huneault, Michel A.
    MATERIALS TODAY COMMUNICATIONS, 2018, 17 : 214 - 228