Heat transfer for power law non-Newtonian fluids

被引:46
作者
Department of Mathematics and Mechanics, University of Science and Technology Beijing, Beijing 100083, China [1 ]
不详 [2 ]
不详 [3 ]
机构
[1] Department of Mathematics and Mechanics, University of Science and Technology Beijing
[2] School of Mechanical Engineering, University of Science and Technology Beijing
[3] Mathematics and Statistics, Southern Illinois University, Edwardsville
来源
Chin. Phys. Lett. | 2006年 / 12卷 / 3301-3304期
关键词
22;
D O I
10.1088/0256-307X/23/12/050
中图分类号
学科分类号
摘要
We present a theoretical analysis for heat transfer in power law non-Newtonian fluid by assuming that the thermal diffusivity is a function of temperature gradient. The laminar boundary layer energy equation is considered as an example to illustrate the application. It is shown that the boundary layer energy equation subject to the corresponding boundary conditions can be transformed to a boundary value problem of a nonlinear ordinary differential equation when similarity variables are introduced. Numerical solutions of the similarity energy equation are presented. ©2006 Chinese Physical Socitey and IOP Publishing Ltd.
引用
收藏
页码:3301 / 3304
页数:3
相关论文
共 22 条
[1]  
Schlichting H., Boundary Layer Theory, (1979)
[2]  
Schowalter W.R., A. I. Ch. E. J., 6, (1960)
[3]  
Acrivos A., Shah M.J., Petersen E.E., A. I. Ch. E. Journal., 6, (1960)
[4]  
Nachman A., Callegari A., SIAM J. Appl. Math., 38, 2, (1980)
[5]  
Howell T.G., Jeng D.R., De Witt K.J., Int. J. Heat Mass Transfer., 40, 8, (1997)
[6]  
Rao J.H., Jeng D.R., De Witt K.J., Int. J. Heat and Mass Transfer., 42, 15, (1999)
[7]  
Wang T.Y., Int. Comm. Heat and Mass Transfer., 22, 3, (1995)
[8]  
Wang T.Y., Int. J. Heat and Fluid Flow., 16, 1, (1995)
[9]  
Hady F.M., Appl. Math. Comput., 68, 2-3, (1995)
[10]  
Luna N., Mendez, Trevio C., Int. J. Heat fluid flow, 45, (2002)