Citation recommendation based on argumentative zoning of user queries

被引:1
作者
Ma, Shutian [1 ,2 ]
Zhang, Chengzhi [1 ]
Zhang, Heng [1 ]
Gao, Zheng [3 ]
机构
[1] Nanjing Univ Sci & Technol, Dept Informat Management, Nanjing 210094, Peoples R China
[2] Tencent, Shenzhen 518063, Peoples R China
[3] Indiana Univ, Dept Informat & Lib Sci, Bloomington, IN 47405 USA
基金
中国国家社会科学基金; 中国国家自然科学基金;
关键词
Citation recommendation; Argumentative zoning; User queries; Citing sentence;
D O I
10.1016/j.joi.2024.101607
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Citation recommendation aims to locate the important papers for scholars to cite. When writing the citing sentences, the authors usually hold different citing intents, which are referred to citation function in citation analysis. Since argumentative zoning is to identify the argumentative and rhetorical structure in scientific literature, we want to use this information to improve the citation recommendation task. In this paper, a multi-task learning model is built for citation recommendation and argumentative zoning classification. We also generated an annotated corpus of the data from PubMed Central based on a new argumentative zoning schema. The experimental results show that, by considering the argumentative information in the citing sentence, citation recommendation model will get better performance.
引用
收藏
页数:14
相关论文
共 71 条
[1]   A deep learning approach for context-aware citation recommendation using rhetorical zone classification and similarity to overcome cold-start problem [J].
Abbas M.A. ;
Ajayi S. ;
Bilal M. ;
Oyegoke A. ;
Pasha M. ;
Ali H.T. .
Journal of Ambient Intelligence and Humanized Computing, 2024, 15 (01) :419-433
[2]  
Abu-Jbara A., 2013, P 2013 C N AM CHAPT, P596
[3]  
AbuRaed A. G. T., 2018, WOSP 2018 7 INT WORK, P7
[4]   Mining arguments in scientific abstracts with discourse-level embeddings [J].
Accuosto, Pablo ;
Saggion, Horacio .
DATA & KNOWLEDGE ENGINEERING, 2020, 129
[5]  
Achakulvisut T, 2020, Arxiv, DOI arXiv:1907.00962
[6]  
Al Khatib Khalid, 2021, P 2 WORKSHOP SCHOLAR, P56
[7]   Recommendation of scholarly venues based on dynamic user interests [J].
Alhoori, Hamed ;
Furuta, Richard .
JOURNAL OF INFORMETRICS, 2017, 11 (02) :553-563
[8]   An overview and evaluation of citation recommendation models [J].
Ali, Zafar ;
Ullah, Irfan ;
Khan, Amin ;
Ullah Jan, Asim ;
Muhammad, Khan .
SCIENTOMETRICS, 2021, 126 (05) :4083-4119
[9]  
[Anonymous], 2004, HAEMATOLOGICA, V89, P264
[10]  
[Anonymous], 2009, P 2009 C EMNLP