Stochastic memristive devices for low cost learning of spatiotemporal signals in spiking neural networks

被引:0
作者
Fida, Aabid Amin [1 ]
Mittal, Sparsh [1 ]
机构
[1] Indian Inst Technol, Elect & Commun Engn, Roorkee, Uttrakhand, India
来源
ENGINEERING RESEARCH EXPRESS | 2024年 / 6卷 / 04期
关键词
memristor; spiking neural network; memristorliquid state machines; resistive random access memory; ECG; EEG;
D O I
10.1088/2631-8695/ad9a3e
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Resistive switching devices are an excellent candidate for dedicated neural network hardware. They offer extremely low-power in-memory computing substrates for edge computing tasks like health monitoring. But, the imprecise and random conductance changes in these devices make deploying neural networks on such hardware significantly challenging. In this regard, biological random networks, known as liquid state machines (LSM), can be helpful. Using them as inspiration we can utilize the imprecise nature of the switching process for a low-cost training approach to learning in spiking recurrent neural networks. We rely on the inherent non-determinism associated with the conductance states in memristive devices to initialize the random weight matrices within a memristive LSM. We also utilize the randomness of the resistive states to introduce heterogeneity in the neuron parameters. The significance of the proposed approach is evaluated using arrhythmia and seizure detection edge computing tasks. For classification tasks using two datasets, our approach reduces the number of computational operations in the backward pass by factors of up to 66 x for the MIT-BIH arrhythmia dataset and 74 x for the CHB-MIT epileptic seizure dataset. The heterogeneity improves the network performance. We also show that our approach is resilient to write noise in memristive devices.
引用
收藏
页数:13
相关论文
共 29 条
[1]   Variability-Aware Modeling of Filamentary Oxide-Based Bipolar Resistive Switching Cells Using SPICE Level Compact Models [J].
Bengel, Christopher ;
Siemon, Anne ;
Cuppers, Felix ;
Hoffmann-Eifert, Susanne ;
Hardtdegen, Alexander ;
von Witzleben, Moritz ;
Hellmich, Lena ;
Waser, Rainer ;
Menzel, Stephan .
IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS I-REGULAR PAPERS, 2020, 67 (12) :4618-4630
[2]   Neuromorphic computing with multi-memristive synapses [J].
Boybat, Irem ;
Le Gallo, Manuel ;
Nandakumar, S. R. ;
Moraitis, Timoleon ;
Parnell, Thomas ;
Tuma, Tomas ;
Rajendran, Bipin ;
Leblebici, Yusuf ;
Sebastian, Abu ;
Eleftheriou, Evangelos .
NATURE COMMUNICATIONS, 2018, 9
[3]   Neuromorphic computing using non-volatile memory [J].
Burr, Geoffrey W. ;
Shelby, Robert M. ;
Sebastian, Abu ;
Kim, Sangbum ;
Kim, Seyoung ;
Sidler, Severin ;
Virwani, Kumar ;
Ishii, Masatoshi ;
Narayanan, Pritish ;
Fumarola, Alessandro ;
Sanches, Lucas L. ;
Boybat, Irem ;
Le Gallo, Manuel ;
Moon, Kibong ;
Woo, Jiyoo ;
Hwang, Hyunsang ;
Leblebici, Yusuf .
ADVANCES IN PHYSICS-X, 2017, 2 (01) :89-124
[4]   A reservoir of foraging decision variables in the mouse brain [J].
Cazettes, Fanny ;
Mazzucato, Luca ;
Murakami, Masayoshi ;
Morais, Joao P. P. ;
Augusto, Elisabete ;
Renart, Alfonso ;
Mainen, Zachary F. F. .
NATURE NEUROSCIENCE, 2023, 26 (05) :840-849
[5]   Exploiting the switching dynamics of HfO2-based ReRAM devices for reliable analog memristive behavior [J].
Cueppers, F. ;
Menzel, S. ;
Bengel, C. ;
Hardtdegen, A. ;
von Witzleben, M. ;
Boettger, U. ;
Waser, R. ;
Hoffmann-Eifert, S. .
APL MATERIALS, 2019, 7 (09)
[6]   In situ learning using intrinsic memristor variability via Markov chain Monte Carlo sampling [J].
Dalgaty, Thomas ;
Castellani, Niccolo ;
Turck, Clement ;
Harabi, Kamel-Eddine ;
Querlioz, Damien ;
Vianello, Elisa .
NATURE ELECTRONICS, 2021, 4 (02) :151-161
[7]   Hybrid neuromorphic circuits exploiting non-conventional properties of RRAM for massively parallel local plasticity mechanisms [J].
Dalgaty, Thomas ;
Payvand, Melika ;
Moro, Filippo ;
Ly, Denys R. B. ;
Pebay-Peyroula, Florian ;
Casas, Jerome ;
Indiveri, Giacomo ;
Vianello, Elisa .
APL MATERIALS, 2019, 7 (08)
[8]   Training Spiking Neural Networks Using Lessons From Deep Learning [J].
Eshraghian, Jason K. ;
Ward, Max ;
Neftci, Emre O. ;
Wang, Xinxin ;
Lenz, Gregor ;
Dwivedi, Girish ;
Bennamoun, Mohammed ;
Jeong, Doo Seok ;
Lu, Wei D. .
PROCEEDINGS OF THE IEEE, 2023, 111 (09) :1016-1054
[9]   Bottom-Up and Top-Down Approaches for the Design of Neuromorphic Processing Systems: Tradeoffs and Synergies Between Natural and Artificial Intelligence [J].
Frenkel, Charlotte ;
Bol, David ;
Indiveri, Giacomo .
PROCEEDINGS OF THE IEEE, 2023, 111 (06) :623-652
[10]   Stochastic memristive devices for computing and neuromorphic applications [J].
Gaba, Siddharth ;
Sheridan, Patrick ;
Zhou, Jiantao ;
Choi, Shinhyun ;
Lu, Wei .
NANOSCALE, 2013, 5 (13) :5872-5878