State-of-health estimation for lithium-ion batteries under complex charging conditions based on SDE-BiLSTM model

被引:0
|
作者
Yu, Xianpeng [1 ,2 ]
Tang, Tianqi [1 ,2 ,3 ]
Song, Zhichao [1 ,2 ,3 ]
He, Yurong [1 ,2 ,3 ]
机构
[1] Harbin Inst Technol, Sch Energy Sci & Engn, Harbin 150001, Peoples R China
[2] Harbin Inst Technol, Sch Energy Sci & Engn, Heilongjiang Key Lab New Energy Storage Mat & Proc, Harbin 150001, Peoples R China
[3] Harbin Inst Technol, Zhengzhou Res Inst, Zhengzhou 450000, Peoples R China
关键词
Lithium-ion batteries; State of health; Interval prediction; Transfer learning; SDE-BiLSTM model; ONLINE STATE; PREDICTION; FRAMEWORK; LSTM;
D O I
10.1016/j.est.2025.115352
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
Accurately forecasting the state of health of lithium-ion batteries is crucial to guarantee their safe utilization. Under complex cycling conditions, conventional models struggle to produce sufficiently accurate results, while consumers are unable to evaluate the results' dependability. To assess the battery health status on an interval basis, this study integrated a stochastic differential equation (SDE) network with a bi-directional long short-term memory (BiLSTM) network, which could improve the accuracy of conventional models. Based on an open-source dataset, the state of health of 12 datasets with different charging strategies of batteries was estimated through conventional models and the interval prediction model, respectively. The root mean square error of state-ofhealth estimation was less than 0.83 %. Furthermore, the lack of observed battery data under practical scenarios poses challenges in establishing an accurate prediction network. Therefore, part of the new dataset was used to represent the data scarcity, and the state of health was estimated by a transfer learning (TL) method. The estimation results of the state of health of the BiLSTM-SDE-TL network agree well with the actual experimental data from the dataset. The comprehensive and reliable lithium-ion batteries' health information was obtained by the BiLSTM-SDE-TL network with simple training process despite a lack of observed data, which has potential for state-of-health prediction in practical complex application scenarios.
引用
收藏
页数:10
相关论文
共 50 条
  • [41] A Novel Model-Based Voltage Construction Method for Robust State-of-Health Estimation of Lithium-Ion Batteries
    Bian, Xiaolei
    Wei, Zhongbao
    He, Jiangtao
    Yan, Fengjun
    Liu, Longcheng
    IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS, 2021, 68 (12) : 12173 - 12184
  • [42] An improved CNN-LSTM model-based state-of-health estimation approach for lithium-ion batteries
    Xu, Huanwei
    Wu, Lingfeng
    Xiong, Shizhe
    Li, Wei
    Garg, Akhil
    Gao, Liang
    ENERGY, 2023, 276
  • [43] Ultrasound simulation technique as state-of-health estimation method of lithium-ion batteries
    Gaviria-Cardona, J. P.
    Guzman-De las Salas, Michael
    Montoya-Escobar, Nicolas
    Florez-Escobar, Whady
    Valencia-Cardona, Raul
    Vladimir Martinez, Hader
    2021 IEEE UFFC LATIN AMERICA ULTRASONICS SYMPOSIUM (LAUS), 2021,
  • [44] State-of-charge and state-of-health estimation for lithium-ion batteries based on dynamic impedance technique
    Hung, Min-Hsuan
    Lin, Chang-Hua
    Lee, Liang-Cheng
    Wang, Chien-Ming
    JOURNAL OF POWER SOURCES, 2014, 268 : 861 - 873
  • [45] An open circuit voltage-based model for state-of-health estimation of lithium-ion batteries: Model development and validation
    Bian, Xiaolei
    Liu, Longcheng
    Yan, Jinying
    Zou, Zhi
    Zhao, Ruikai
    JOURNAL OF POWER SOURCES, 2020, 448
  • [46] Multistep Fast Charging-Based State of Health Estimation of Lithium-Ion Batteries
    Zhang, Dayu
    Wang, Zhenpo
    Liu, Peng
    Wang, Qiushi
    She, Chengqi
    Bauer, Pavol
    Qin, Zian
    IEEE TRANSACTIONS ON TRANSPORTATION ELECTRIFICATION, 2024, 10 (03): : 4640 - 4652
  • [47] Evolving Elman neural networks based state-of-health estimation for satellite lithium-ion batteries
    Zhang, Dengfeng
    Li, Weichen
    Han, Xiaodong
    Lu, Baochun
    Zhang, Quanling
    Bo, Cuimei
    JOURNAL OF ENERGY STORAGE, 2023, 59
  • [48] State-of-Health Estimation for Lithium-Ion Batteries Based on Wiener Process With Modeling the Relaxation Effect
    Xu, Xiaodong
    Yu, Chuanqiang
    Tang, Shengjin
    Sun, Xiaoyan
    Si, Xiaosheng
    Wu, Lifeng
    IEEE ACCESS, 2019, 7 : 105186 - 105201
  • [49] State-of-health Estimation of Lithium-ion Batteries Based on EMD-DO-Elman and GRA
    Qian, Yucun
    Yang, Bo
    Zheng, Ruyi
    Liang, Boxiao
    Wu, Pengyu
    Dianwang Jishu/Power System Technology, 2024, 48 (09): : 3695 - 3704
  • [50] State of Health Estimation for Lithium-Ion Batteries Based on Partial Charging Curve Reconstruction
    Sun, Yiwen
    Diao, Qi
    Xu, Hongzhang
    Tan, Xiaojun
    Fan, Yuqian
    Wei, Liangliang
    IEEE TRANSACTIONS ON POWER ELECTRONICS, 2025, 40 (04) : 6107 - 6118