Federated semi-supervised learning based on truncated Gaussian aggregation

被引:0
|
作者
Zhu, Suxia [1 ,2 ]
Wang, Yunmeng [1 ,2 ]
Sun, Guanglu [1 ,2 ]
机构
[1] Harbin Univ Sci & Technol, Sch Comp Sci & Technol, Harbin 150080, Peoples R China
[2] Harbin Inst Technol, State Key Lab Robot & Syst, Harbin 150080, Peoples R China
关键词
Federated learning; Semi-supervised learning; Gaussian function; Pseudo-label; Machine learning;
D O I
10.1007/s11227-024-06798-z
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
Due to the high cost of labeling and the high requirements of annotation professionalism, there is a lack of labeling of large quantities of data. As a solution to the problem of partially labeled data in federated learning (FL), federated semi-supervised learning (FSSL) has emerged. To take advantage of this large volume of unlabeled data to improve model performance, we propose a semi-supervised federated learning (TGAFed) based on truncated Gaussian aggregation, which focuses on the case where each client has access to both labeled and unlabeled data in the federated semi-supervised learning. The unlabeled samples were weighted according to the truncated Gaussian distribution fitted by the model prediction probability of the unlabeled samples, so as to optimize the filtering of pseudo-label and generates a new inter-client consistency loss based on truncated Gaussian distribution to improve the utilization rate of pseudo-label. Then, clients perform mean aggregation based on local quantity-quality factors, while global quantity-quality factors assist clients in their local updates through exponential moving averages, gradually improving the performance of the global model. Finally, we validate the superiority of the TGAFed method on three benchmark datasets, Cifar100, Cifar10 and CINIC-10.
引用
收藏
页数:22
相关论文
共 50 条
  • [1] Network traffic classification based on federated semi-supervised learning
    Wang, Zixuan
    Li, Zeyi
    Fu, Mengyi
    Ye, Yingchun
    Wang, Pan
    JOURNAL OF SYSTEMS ARCHITECTURE, 2024, 149
  • [2] Intrusion detection for Softwarized Networks with Semi-supervised Federated Learning
    Aouedi, Ons
    Piamrat, Kandaraj
    Muller, Guillaume
    Singh, Kamal
    IEEE INTERNATIONAL CONFERENCE ON COMMUNICATIONS (ICC 2022), 2022, : 5244 - 5249
  • [3] Multi-Party Federated Recommendation Based on Semi-Supervised Learning
    Liu, Xin
    Lv, Jiuluan
    Chen, Feng
    Wei, Qingjie
    He, Hangxuan
    Qian, Ying
    IEEE TRANSACTIONS ON BIG DATA, 2024, 10 (04) : 356 - 370
  • [4] Semi-supervised federated learning on evolving data streams
    Mawuli, Cobbinah B.
    Kumar, Jay
    Nanor, Ebenezer
    Fu, Shangxuan
    Pan, Liangxu
    Yang, Qinli
    Zhang, Wei
    Shao, Junming
    INFORMATION SCIENCES, 2023, 643
  • [5] Misbehavior detection system with semi-supervised federated learning
    Kristianto, Edy
    Lin, Po-Ching
    Hwang, Ren-Hung
    VEHICULAR COMMUNICATIONS, 2023, 41
  • [6] Uncertainty Minimization for Personalized Federated Semi-Supervised Learning
    Shi, Yanhang
    Chen, Siguang
    Zhang, Haijun
    IEEE TRANSACTIONS ON NETWORK SCIENCE AND ENGINEERING, 2023, 10 (02): : 1060 - 1073
  • [7] FedECG: A federated semi-supervised learning framework for electrocardiogram abnormalities prediction
    Ying, Zuobin
    Zhang, Guoyang
    Pan, Zijie
    Chu, Chiawei
    Liu, Ximeng
    JOURNAL OF KING SAUD UNIVERSITY-COMPUTER AND INFORMATION SCIENCES, 2023, 35 (06)
  • [8] Semi-supervised Learning with Gaussian Processes
    Li, Hongwei
    Li, Yakui
    Lu, Hanqing
    PROCEEDINGS OF THE 2008 CHINESE CONFERENCE ON PATTERN RECOGNITION (CCPR 2008), 2008, : 13 - 17
  • [9] Semi-HFL: semi-supervised federated learning for heterogeneous devices
    Zhengyi Zhong
    Ji Wang
    Weidong Bao
    Jingxuan Zhou
    Xiaomin Zhu
    Xiongtao Zhang
    Complex & Intelligent Systems, 2023, 9 : 1995 - 2017
  • [10] Semi-HFL: semi-supervised federated learning for heterogeneous devices
    Zhong, Zhengyi
    Wang, Ji
    Bao, Weidong
    Zhou, Jingxuan
    Zhu, Xiaomin
    Zhang, Xiongtao
    COMPLEX & INTELLIGENT SYSTEMS, 2023, 9 (02) : 1995 - 2017