Learner Phase of Partial Reinforcement Optimizer with Nelder-Mead Simplex for Parameter Extraction of Photovoltaic Models

被引:0
|
作者
Huang, Jinpeng [1 ]
Cai, Zhennao [1 ]
Heidari, Ali Asghar [2 ]
Liu, Lei [3 ]
Chen, Huiling [1 ]
Liang, Guoxi [4 ]
机构
[1] Wenzhou Univ, Dept Comp Sci & Artificial Intelligence, Wenzhou 325035, Peoples R China
[2] Univ Tehran, Sch Surveying & Geospatial Engn, Coll Engn, Tehran 1417935840, Iran
[3] Sichuan Univ, Coll Comp Sci, Chengdu 610065, Sichuan, Peoples R China
[4] Wenzhou Polytech, Dept Artificial Intelligence, Wenzhou 325035, Peoples R China
关键词
Partial reinforcement optimizer; Learner phase; Nelder-Mead simplex algorithm; Parameter extraction; WHALE OPTIMIZATION; SWARM OPTIMIZATION; SOLAR; ALGORITHM; CELL; IDENTIFICATION; SEARCH; POWER; PERFORMANCE; EVOLUTION;
D O I
10.1007/s42235-024-00593-5
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
This paper proposes an improved version of the Partial Reinforcement Optimizer (PRO), termed LNPRO. The LNPRO has undergone a learner phase, which allows for further communication of information among the PRO population, changing the state of the PRO in terms of self-strengthening. Furthermore, the Nelder-Mead simplex is used to optimize the best agent in the population, accelerating the convergence speed and improving the accuracy of the PRO population. By comparing LNPRO with nine advanced algorithms in the IEEE CEC 2022 benchmark function, the convergence accuracy of the LNPRO has been verified. The accuracy and stability of simulated data and real data in the parameter extraction of PV systems are crucial. Compared to the PRO, the precision and stability of LNPRO have indeed been enhanced in four types of photovoltaic components, and it is also superior to other excellent algorithms. To further verify the parameter extraction problem of LNPRO in complex environments, LNPRO has been applied to three types of manufacturer data, demonstrating excellent results under varying irradiation and temperatures. In summary, LNPRO holds immense potential in solving the parameter extraction problems in PV systems.
引用
收藏
页码:3041 / 3075
页数:35
相关论文
共 48 条
  • [1] Horizontal and vertical crossover of Harris hawk optimizer with Nelder-Mead simplex for parameter estimation of photovoltaic models
    Liu, Yun
    Chong, Guoshuang
    Heidari, Ali Asghar
    Chen, Huiling
    Liang, Guoxi
    Ye, Xiaojia
    Cai, Zhennao
    Wangg, Mingjing
    ENERGY CONVERSION AND MANAGEMENT, 2020, 223
  • [2] Information sharing search boosted whale optimizer with Nelder-Mead simplex for parameter estimation of photovoltaic models
    Peng, Lemin
    He, Caitou
    Heidari, Ali Asghar
    Zhang, Qian
    Chen, Huiling
    Liang, Guoxi
    Aljehane, Nojood O.
    Mansour, Romany F.
    ENERGY CONVERSION AND MANAGEMENT, 2022, 270
  • [3] Environment random interaction of rime optimization with Nelder-Mead simplex for parameter estimation of photovoltaic models
    Shi, Jinge
    Chen, Yi
    Heidari, Ali Asghar
    Cai, Zhennao
    Chen, Huiling
    Chen, Yipeng
    Liang, Guoxi
    SCIENTIFIC REPORTS, 2024, 14 (01):
  • [4] Laplacian Nelder-Mead spherical evolution for parameter estimation of photovoltaic models
    Weng, Xuemeng
    Heidari, Ali Asghar
    Liang, Guoxi
    Chen, Huiling
    Ma, Xinsheng
    Mafarja, Majdi
    Turabieh, Hamza
    ENERGY CONVERSION AND MANAGEMENT, 2021, 243
  • [5] Parameter sensitivity study of the Nelder-Mead Simplex Method
    Wang, Peter C.
    Shoup, Terry E.
    ADVANCES IN ENGINEERING SOFTWARE, 2011, 42 (07) : 529 - 533
  • [6] Parameter Estimation of Nonlinear Muskingum Models Using Nelder-Mead Simplex Algorithm
    Barati, Reza
    JOURNAL OF HYDROLOGIC ENGINEERING, 2011, 16 (11) : 946 - 954
  • [7] Static photovoltaic models' parameter extraction using reinforcement learning strategy adapted local gradient Nelder-Mead Runge Kutta method
    Chen, Zhiqing
    Kuang, Fangjun
    Yu, Sudan
    Cai, Zhennao
    Chen, Huiling
    APPLIED INTELLIGENCE, 2023, 53 (20) : 24106 - 24141
  • [8] Static photovoltaic models’ parameter extraction using reinforcement learning strategy adapted local gradient Nelder-Mead Runge Kutta method
    Zhiqing Chen
    Fangjun Kuang
    Sudan Yu
    Zhennao Cai
    Huiling Chen
    Applied Intelligence, 2023, 53 : 24106 - 24141
  • [9] A genetic algorithm and a particle swarm optimizer hybridized with Nelder-Mead simplex search
    Fan, Shu-kai S.
    Liang, Yun-Chia
    Zahara, Erwie
    COMPUTERS & INDUSTRIAL ENGINEERING, 2006, 50 (04) : 401 - 425
  • [10] Extremal Nelder-Mead colony predation algorithm for parameter estimation of solar photovoltaic models
    Xu, Boyang
    Heidari, Ali Asghar
    Zhang, Siyang
    Chen, Huiling
    Shao, Qike
    ENERGY SCIENCE & ENGINEERING, 2022, 10 (10) : 4176 - 4219