Electrically silent mutants unravel the mechanism of binding-gating coupling in Cys-loop receptors

被引:0
作者
Godellas, Nicole E. [1 ]
Cymes, Gisela D. [1 ]
Grosman, Claudio [1 ,2 ,3 ]
机构
[1] Univ Illinois Urabna Champaign, Dept Mol & Integrat Physiol, Urbana, IL 61801 USA
[2] Univ Illinois, Ctr Biophys & Quantitat Biol, Urbana, IL 61801 USA
[3] Univ Illinois, Neurosci Program, Urbana, IL 61801 USA
来源
SCIENCE ADVANCES | 2024年 / 10卷 / 48期
关键词
NICOTINIC ACETYLCHOLINE-RECEPTOR; GATED CHLORIDE CHANNEL; <H-3>MUSCIMOL BINDING; ALPHA-BUNGAROTOXIN; AGONIST BINDING; M2; DOMAIN; PICROTOXIN; CURRENTS; PROTEIN; REVEAL;
D O I
10.1126/sciadv.adq8048
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
The transduction of extracellular chemical signals into intracellular events relies on the communication between neighboring domains of membrane receptors. In the particular case of Cys-loop receptor channels, five short stretches of amino acids, one per subunit, link the extracellular and transmembrane domains in such a way that the ion permeability of the latter and the affinity for neurotransmitters of the former become tied to each other. Here, using direct functional approaches, we set out to understand the molecular bases of this crucial interdependence through the characterization of total loss-of-current mutations at the interface between domains. Our results indicate that domain-domain proximity plays a previously unnoticed critical role inasmuch as inserting a single residue in each linker rendered the two domains independent of each other. In marked contrast, loss-of-current mutations that leave the linkers' length unaltered did not compromise the interdomain coupling, but rather, seemed to cause agonist-bound closed receptors to desensitize without appreciably opening.
引用
收藏
页数:14
相关论文
共 73 条
  • [1] Jackson M. B., Perfection of a synaptic receptor: Kinetics and energetics of the acetylcholine receptor, Proc. Natl. Acad. Sci. U.S.A, 86, pp. 2199-2203, (1989)
  • [2] devillers-thiery A., Galzi J. l., eisele J. l., Bertrand S., Bertrand d., changeux J. P., Functional architecture of the nicotinic acetylcholine receptor: A prototype of ligand-gated ion channels, J. Membr. Biol, 136, pp. 97-112, (1993)
  • [3] Miyazawa A., Fujiyoshi Y., Unwin N., Structure and gating mechanism of the acetylcholine receptor pore, Nature, 423, pp. 949-955, (2003)
  • [4] duret G., van Renterghem c., Weng Y., Prevost M., Moraga-cid G., huon c., Sonner J. M., corringer P.-J., Functional prokaryotic-eukaryotic chimera from the pentameric ligand-gated ion channel family, Proc. Natl. Acad. Sci. U.S.A, 108, pp. 12143-12148, (2011)
  • [5] eisele J.-l., Bertrand S., Galzi J.-l., devillers-thiery A., changeux J.-P., Bertrand d., chimaeric nicotinic-serotonergic receptor combines distinct ligand binding and channel specificities, Nature, 366, pp. 479-483, (1993)
  • [6] Ghosh B., tsao t.-W., czajkowski c., A chimeric prokaryotic-eukaryotic pentameric ligand gated ion channel reveals interactions between the extracellular and transmembrane domains shape neurosteroid modulation, Neuropharmacology, 125, pp. 343-352, (2017)
  • [7] Grutter t., de carvalho l. P., dufresne v., taly A., edelstein S. J., changeux J.-P., Molecular tuning of fast gating in pentameric ligand-gated ion channels, Proc. Natl. Acad. Sci. U.S.A, 102, pp. 18207-18212, (2005)
  • [8] laverty d., thomas P., Field M., Andersen O. J., Gold M. G., Biggin P. c., Gielen M., Smart t. G., crystal structures of a GABAA-receptor chimera reveal new endogenous neurosteroid-binding sites, Nat. Struct. Mol. Biol, 24, pp. 977-985, (2017)
  • [9] Price K. l., lummis S. c. R., characterization of a 5-ht3-elic chimera revealing the sites of action of modulators, ACS Chem. Nerosci, 9, pp. 1409-1415, (2018)
  • [10] Sunesen M., de carvalho l. P., dufresne v., Grailhe R., Savatier-duclert N., Gibor G., Peretz A., Attali B., changeux J.-P., Paas Y., Mechanism of cl<sup>−</sup> selection by a glutamate-gated chloride (Glucl) receptor revealed through mutations in the selectivity filter, J. Biol. Chem, 281, pp. 14875-14881, (2006)