Multi-contrast image super-resolution with deformable attention and neighborhood-based feature aggregation (DANCE): Applications in anatomic and metabolic MRI

被引:1
|
作者
Chen, Wenxuan [1 ]
Wu, Sirui [1 ,2 ]
Wang, Shuai [1 ]
Li, Zhongsen [1 ]
Yang, Jia [3 ]
Yao, Huifeng [4 ]
Tian, Qiyuan [1 ]
Song, Xiaolei [1 ]
机构
[1] Tsinghua Univ, Ctr Biomed Imaging Res, Sch Med, Beijing 100084, Peoples R China
[2] Xian Jiaotong Univ China Mobile Commun Grp Co Ltd, Digital Govt Joint Inst, Xian, Peoples R China
[3] Tsinghua Univ, Sch Mat Sci & Engn, Beijing 100084, Peoples R China
[4] Hongkong Univ Sci & Technol, Dept Comp Sci & Engn, Hong Kong 999077, Peoples R China
基金
中国国家自然科学基金; 国家重点研发计划;
关键词
Multi-contrast MRI; Deep learning; Super-resolution; Misalignment; Feature fusion; RECONSTRUCTION; TOMOGRAPHY; RESOLUTION;
D O I
10.1016/j.media.2024.103359
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Multi-contrast magnetic resonance imaging (MRI) reflects information about human tissues from different perspectives and has wide clinical applications. By utilizing the auxiliary information from reference images (Refs) in the easy-to-obtain modality, multi-contrast MRI super-resolution (SR) methods can synthesize high- resolution (HR) images from their low-resolution (LR) counterparts in the hard-to-obtain modality. In this study, we systematically discussed the potential impacts caused by cross-modal misalignments between LRs and Refs and, based on this discussion, proposed a novel deep-learning-based method with D eformable A ttention and N eighborhood-based feature aggregation to be C omputationally E fficient (DANCE) and insensitive to misalignments. Our method has been evaluated in two public MRI datasets, i.e., IXI and FastMRI, and an inhouse MR metabolic imaging dataset with amide proton transfer weighted (APTW) images. Experimental results reveal that our method consistently outperforms baselines in various scenarios, with significant superiority observed in the misaligned group of IXI dataset and the prospective study of the clinical dataset. The robustness study proves that our method is insensitive to misalignments, maintaining an average PSNR of 30.67 dB when faced with a maximum range of +/- 9 degrees and +/- 9 pixels of rotation and translation on Refs. Given our method's desirable comprehensive performance, good robustness, and moderate computational complexity, it possesses substantial potential for clinical applications.
引用
收藏
页数:12
相关论文
共 50 条
  • [31] Lightweight single image super-resolution based on multi-path progressive feature fusion and attention mechanism
    Shanshan Li
    Dengwen Zhou
    Yukai Liu
    Dandan Gao
    Wanjun Wang
    International Journal of Machine Learning and Cybernetics, 2023, 14 : 3517 - 3528
  • [32] Lightweight single image super-resolution based on multi-path progressive feature fusion and attention mechanism
    Li, Shanshan
    Zhou, Dengwen
    Liu, Yukai
    Gao, Dandan
    Wang, Wanjun
    INTERNATIONAL JOURNAL OF MACHINE LEARNING AND CYBERNETICS, 2023, 14 (10) : 3517 - 3528
  • [33] Image super-resolution network based on a multi-branch attention mechanism
    Yang, Xin
    Guo, Yingqing
    Li, Zhiqiang
    Zhou, Dake
    SIGNAL IMAGE AND VIDEO PROCESSING, 2021, 15 (07) : 1397 - 1405
  • [34] Image super-resolution network based on multi-scale adaptive attention
    Zhou Y.
    Pei S.
    Chen H.
    Xu S.
    Guangxue Jingmi Gongcheng/Optics and Precision Engineering, 2024, 32 (06): : 843 - 856
  • [35] Image Super-Resolution Reconstruction Based on Lightweight Multi-Scale Channel Attention Network
    Zhou D.-W.
    Li W.-B.
    Li J.-X.
    Huang Z.-Y.
    Tien Tzu Hsueh Pao/Acta Electronica Sinica, 2022, 50 (10): : 2336 - 2346
  • [36] Single image super-resolution using multi-scale feature enhancement attention residual network
    Pandey, Garima
    Ghanekar, Umesh
    OPTIK, 2021, 231
  • [37] Attention-based multi-image super-resolution reconstruction for remote sensing
    Ding, Xueyan
    Wang, Wenshan
    Zhang, Bingbing
    Zhang, Jianxin
    SIGNAL IMAGE AND VIDEO PROCESSING, 2025, 19 (06)
  • [38] An image super-resolution deep learning network based on multi-level feature extraction module
    Yang, Xin
    Zhang, Yifan
    Guo, Yingqing
    Zhou, Dake
    MULTIMEDIA TOOLS AND APPLICATIONS, 2021, 80 (05) : 7063 - 7075
  • [39] An image super-resolution deep learning network based on multi-level feature extraction module
    Xin Yang
    Yifan Zhang
    Yingqing Guo
    Dake Zhou
    Multimedia Tools and Applications, 2021, 80 : 7063 - 7075
  • [40] Single image super-resolution reconstruction based on multi-scale feature mapping adversarial network
    Zhou, Dengwen
    Duan, Ran
    Zhao, Lijuan
    Chai, Xiaoliang
    SIGNAL PROCESSING, 2020, 166