PLC-Fusion: Perspective-Based Hierarchical and Deep LiDAR Camera Fusion for 3D Object Detection in Autonomous Vehicles

被引:1
|
作者
Mushtaq, Husnain [1 ]
Deng, Xiaoheng [1 ]
Azhar, Fizza [2 ]
Ali, Mubashir [3 ]
Sherazi, Hafiz Husnain Raza [4 ]
机构
[1] Cent South Univ, Sch Comp Sci & Engn, Changsha 410083, Peoples R China
[2] Univ Chenab, Dept Comp Sci, Gujrat 50700, Pakistan
[3] Univ Birmingham, Sch Comp Sci, Birmingham B15 2TT, England
[4] Newcastle Univ, Sch Comp, Newcastle Upon Tyne NE4 5TG, England
基金
中国国家自然科学基金;
关键词
LiDAR-camera fusion; object perspective sampling; ViT feature fusion; 3D object detection; autonomous vehicles;
D O I
10.3390/info15110739
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Accurate 3D object detection is essential for autonomous driving, yet traditional LiDAR models often struggle with sparse point clouds. We propose perspective-aware hierarchical vision transformer-based LiDAR-camera fusion (PLC-Fusion) for 3D object detection to address this. This efficient, multi-modal 3D object detection framework integrates LiDAR and camera data for improved performance. First, our method enhances LiDAR data by projecting them onto a 2D plane, enabling the extraction of object perspective features from a probability map via the Object Perspective Sampling (OPS) module. It incorporates a lightweight perspective detector, consisting of interconnected 2D and monocular 3D sub-networks, to extract image features and generate object perspective proposals by predicting and refining top-scored 3D candidates. Second, it leverages two independent transformers-CamViT for 2D image features and LidViT for 3D point cloud features. These ViT-based representations are fused via the Cross-Fusion module for hierarchical and deep representation learning, improving performance and computational efficiency. These mechanisms enhance the utilization of semantic features in a region of interest (ROI) to obtain more representative point features, leading to a more effective fusion of information from both LiDAR and camera sources. PLC-Fusion outperforms existing methods, achieving a mean average precision (mAP) of 83.52% and 90.37% for 3D and BEV detection, respectively. Moreover, PLC-Fusion maintains a competitive inference time of 0.18 s. Our model addresses computational bottlenecks by eliminating the need for dense BEV searches and global attention mechanisms while improving detection range and precision.
引用
收藏
页数:23
相关论文
共 50 条
  • [1] Fusion of 3D LIDAR and Camera Data for Object Detection in Autonomous Vehicle Applications
    Zhao, Xiangmo
    Sun, Pengpeng
    Xu, Zhigang
    Min, Haigen
    Yu, Hongkai
    IEEE SENSORS JOURNAL, 2020, 20 (09) : 4901 - 4913
  • [2] Improving Radar-Camera Fusion-based 3D Object Detection for Autonomous Vehicles
    Kurniawan, Irfan Tito
    Trilaksono, Bambang Riyanto
    2022 12TH INTERNATIONAL CONFERENCE ON SYSTEM ENGINEERING AND TECHNOLOGY (ICSET 2022), 2022, : 42 - 47
  • [3] 3D object detection based on image and LIDAR fusion for autonomous driving
    Chen G.
    Yi H.
    Mao Z.
    International Journal of Vehicle Information and Communication Systems, 2023, 8 (03) : 237 - 251
  • [4] A sensor fusion system with thermal infrared camera and LiDAR for autonomous vehicles and deep learning based object detection
    Choi, Ji Dong
    Kim, Min Young
    ICT EXPRESS, 2023, 9 (02): : 222 - 227
  • [5] A LiDAR-Camera Fusion 3D Object Detection Algorithm
    Liu, Leyuan
    He, Jian
    Ren, Keyan
    Xiao, Zhonghua
    Hou, Yibin
    INFORMATION, 2022, 13 (04)
  • [6] LiDAR-Camera Fusion in Perspective View for 3D Object Detection in Surface Mine
    Ai, Yunfeng
    Yang, Xue
    Song, Ruiqi
    Cui, Chenglin
    Li, Xinqing
    Cheng, Qi
    Tian, Bin
    Chen, Long
    IEEE TRANSACTIONS ON INTELLIGENT VEHICLES, 2024, 9 (02): : 3721 - 3730
  • [7] Deep structural information fusion for 3D object detection on LiDAR-camera system
    An, Pei
    Liang, Junxiong
    Yu, Kun
    Fang, Bin
    Ma, Jie
    COMPUTER VISION AND IMAGE UNDERSTANDING, 2022, 214
  • [8] BAFusion: Bidirectional Attention Fusion for 3D Object Detection Based on LiDAR and Camera
    Liu, Min
    Jia, Yuanjun
    Lyu, Youhao
    Dong, Qi
    Yang, Yanyu
    SENSORS, 2024, 24 (14)
  • [9] Rethinking the Late Fusion of LiDAR-Camera Based 3D Object Detection
    Yu, Lehang
    Zhang, Jing
    Liu, Zhong
    Yue, Haosong
    Chen, Weihai
    2024 IEEE 19TH CONFERENCE ON INDUSTRIAL ELECTRONICS AND APPLICATIONS, ICIEA 2024, 2024,
  • [10] 3D Vehicle Detection Based on LiDAR and Camera Fusion
    Cai, Yingfeng
    Zhang, Tiantian
    Wang, Hai
    Li, Yicheng
    Liu, Qingchao
    Chen, Xiaobo
    AUTOMOTIVE INNOVATION, 2019, 2 (04) : 276 - 283