Comparison of performance and realization effort of a very sparse matrix converter to a voltage DC link PWM inverter with active front end

被引:12
作者
Swiss Federal Institute of Technology, Physikstrasse 3, 8092, Zurich, Switzerland [1 ]
不详 [2 ]
不详 [3 ]
不详 [4 ]
机构
[1] Swiss Federal Institute of Technology, 8092, Zurich
[2] Power Electronic Systems Laboratory, ETH Zurich
来源
IEEJ Trans. Ind Appl. | 2006年 / 5卷 / 578-588+7期
关键词
Back-to-back converter; Converter design; Efficiency comparison; Matrix converter; Volume comparison;
D O I
10.1541/ieejias.126.578
中图分类号
学科分类号
摘要
This paper undertakes a comparison of the very sparse matrix converter (VSMC) and the back-to-back voltage DC-link converter (BBC) for a permanent magnetic synchronous motor drive application. The VSMC has the same functionality as the conventional matrix converter but a reduced number of switches and lower control complexity. The two converters are designed, using the same IGBT power modules, with a switching frequency of 40 kHz and a thermal rating of 6.8 kW at an ambient temperature of 45°C. From the design, the volume of the VSMC is 2.3 liters and is half that of the BBC. The efficiency for the VSMC at full load is 94.5% compared to 92% for the BBC. At very low output frequencies the output current of the VSMC can be increased by 25% above nominal compared to a 54% decrease for the BBC. Overall the VSMC offers advantages in volume and efficiency for motor drive applications requiring switching frequencies above 10 kHz.
引用
收藏
页码:578 / 588+7
相关论文
共 18 条
[1]  
Wheeler P., Rodriguez J., Clare J., Empringham L., Weinstein A., Matrix converters: A technology review, IEEE Trans. Industrial Electronics, 49, 2, pp. 276-288, (2002)
[2]  
Itoh J., Sato I., Odaka A., Ohguchi H., Kodatchi H., Eguchi N., A novel approach to practical matrix converter motor drive system with reverse blocking IGBT, Proc. PESC, pp. 2380-2385, (2004)
[3]  
Klumpner C., Blaabjerg F., Nielsen P., Speeding-up the maturation process of the matrix converter technology, Proc. PESC, 2, pp. 1083-1088, (2001)
[4]  
Simon O., Mahlein J., Muenzer M., Bruckmann M., Modern solutions for industrial matrix-converter applications, IEEE Trans. Ind. Electronics, 49, 2, pp. 401-406, (2002)
[5]  
Kolar J., Baumann M., Schafmeister F., Ertl H., Novel three-phase ACDC-AC sparse matrix converter-part I and II, Proc. APEC, 2, pp. 777-791, (2002)
[6]  
Bernet S., Ponnaluri S., Teichmann R., Design and loss comparison of matrix converters and voltage-source converters for modern AC drives, IEEE Trans. Ind. Electronics, 49, 2, pp. 304-314, (2002)
[7]  
Tallam R., Naik R., Gasperi M., Nondahl T., Hai Hui L., Qiang Y., Practical issues in the design of active rectifiers for AC drives with reduced DC-link capacitance, Proc. of Ind. Applications Conference, 3, pp. 1538-1545, (2003)
[8]  
Kolar J., Schafmeister F., Novel modulation schemes minimizing the switching losses of sparse matrix converters, Proc. IECON, pp. 2085-2090, (2003)
[9]  
Casadei D., Serra G., Tani A., Reduction of the input current harmonic content in matrix converters under input/output unbalance, IEEE Trans. Ind. Electronics, 45, pp. 401-411, (1998)
[10]  
Kang J., Hara H., Yamamoto E., Watanabe E., Hava A., Kume T., The matrix converter drive performance under abnormal input voltage conditions, Proc. Power Electronics Specialists Conf., 2, pp. 1089-1095, (2001)