Crystal synthesizability prediction using contrastive positive unlabeled learning

被引:0
作者
Sun, Tao [1 ,3 ]
Yuan, Jianmei [1 ,2 ,3 ]
机构
[1] Xiangtan Univ, Sch Math & Computat Sci, Xiangtan 411105, Hunan, Peoples R China
[2] Xiangtan Univ, Minist Educ, Key Lab Intelligent Comp & Informat Proc, Xiangtan 411105, Hunan, Peoples R China
[3] Natl Ctr Appl Math Hunan, Xiangtan 411105, Hunan, Peoples R China
关键词
Perovskite materials; Photovoltaic applications; Contrastive learning; Positive unlabeled learning; PEROVSKITE; ALGORITHM;
D O I
10.1016/j.cpc.2024.109465
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
High-throughput screening or generative models rapidly identify crystal structures with the desired properties, but the synthesizable ratio is generally low. Experimentally verifying the synthesizability of individual virtual crystals would entail significant time and resources. Therefore, a method for automatically assessing the synthesizability of virtual crystals is urgently needed. This paper describes an approach that combines contrastive learning and positive unlabeled learning. The resulting contrastive positive unlabeled learning (CPUL) model predicts the crystal-likeness score (CLscore) of virtual materials. The model achieves a true positive (CLscore > 0.5) prediction accuracy of 93.95% on a test set containing 10,000 materials taken from the Materials Project (MP) database. We further validate the model by using all Fe-containing materials from the MP database as the test set, obtaining a true positive rate of 88.89%. This indicates that the CPUL model performs well, even with limited knowledge of the interactions between Fe and the atoms in the crystals. The CPUL model is then used to assess the CLscore of virtual crystals in the MP database and analyze their synthesizability by combining the energy above the hull. Finally, the synthesizability of perovskite materials is predicted using the proposed CPUL model, resulting in seven candidate halide perovskite materials for photovoltaic applications.
引用
收藏
页数:9
相关论文
共 44 条
[21]   Efficient and stable emission of warm-white light from lead-free halide double perovskites [J].
Luo, Jiajun ;
Wang, Xiaoming ;
Li, Shunran ;
Liu, Jing ;
Guo, Yueming ;
Niu, Guangda ;
Yao, Li ;
Fu, Yuhao ;
Gao, Liang ;
Dong, Qingshun ;
Zhao, Chunyi ;
Leng, Meiying ;
Ma, Fusheng ;
Liang, Wenxi ;
Wang, Liduo ;
Jin, Shengye ;
Han, Junbo ;
Zhang, Lijun ;
Etheridge, Joanne ;
Wang, Jianbo ;
Yan, Yanfa ;
Sargent, Edward H. ;
Tang, Jiang .
NATURE, 2018, 563 (7732) :541-+
[22]   Data-driven discovery of 2D materials by deep generative models [J].
Lyngby, Peder ;
Thygesen, Kristian Sommer .
NPJ COMPUTATIONAL MATERIALS, 2022, 8 (01)
[23]   A bagging SVM to learn from positive and unlabeled examples [J].
Mordelet, F. ;
Vert, J. -P. .
PATTERN RECOGNITION LETTERS, 2014, 37 :201-209
[24]   Chemical doping of lead-free metal-halide-perovskite related materials for efficient white-light photoluminescence [J].
Nie, Jingheng ;
Zhou, Bo ;
Fang, Shaofan ;
Wang, Ye ;
Wang, Yu ;
Tian, Bingbing ;
Hu, Hanlin ;
Zhong, Haizhe ;
Li, Henan ;
Shi, Yumeng .
MATERIALS TODAY PHYSICS, 2023, 31
[25]   Unveiling new stable manganese based photoanode materials via theoretical high-throughput screening and experiments [J].
Noh, Juhwan ;
Kim, Sungwon ;
Gu, Geun Ho ;
Shinde, Aniketa ;
Zhou, Lan ;
Gregoire, John M. ;
Jung, Yousung .
CHEMICAL COMMUNICATIONS, 2019, 55 (89) :13418-13421
[26]   Python']Python Materials Genomics (pymatgen): A robust, open-source python']python library for materials analysis [J].
Ong, Shyue Ping ;
Richards, William Davidson ;
Jain, Anubhav ;
Hautier, Geoffroy ;
Kocher, Michael ;
Cholia, Shreyas ;
Gunter, Dan ;
Chevrier, Vincent L. ;
Persson, Kristin A. ;
Ceder, Gerbrand .
COMPUTATIONAL MATERIALS SCIENCE, 2013, 68 :314-319
[27]   A heuristic algorithm for solving the minimum sum-of-squares clustering problems [J].
Ordin, Burak ;
Bagirov, Adil M. .
JOURNAL OF GLOBAL OPTIMIZATION, 2015, 61 (02) :341-361
[28]   Diffusion probabilistic models enhance variational autoencoder for crystal structure generative modeling [J].
Pakornchote, Teerachote ;
Choomphon-anomakhun, Natthaphon ;
Arrerut, Sorrjit ;
Atthapak, Chayanon ;
Khamkaeo, Sakarn ;
Chotibut, Thiparat ;
Bovornratanaraks, Thiti .
SCIENTIFIC REPORTS, 2024, 14 (01)
[29]  
Paszke A, 2019, ADV NEUR IN, V32
[30]   Pivotal Role of Surface Terminations in MXene Thermodynamic Stability [J].
Rems, Ervin ;
Hu, Yong-Jie ;
Gogotsi, Yury ;
Dominko, Robert .
CHEMISTRY OF MATERIALS, 2024, 36 (20) :10295-10306