Heuristic-Based Multi-Agent Deep Reinforcement Learning Approach for Coordinating Connected and Automated Vehicles at Non-Signalized Intersection

被引:0
|
作者
Guo, Zihan [1 ,2 ]
Wu, Yan [1 ,2 ]
Wang, Lifang [1 ,2 ]
Zhang, Junzhi [3 ]
机构
[1] Chinese Acad Sci, Inst Elect Engn, Key Lab High Dens Electromagnet Power & Syst, Beijing 100190, Peoples R China
[2] Univ Chinese Acad Sci, Beijing 100049, Peoples R China
[3] Tsinghua Univ, Dept Automot Engn, Key Lab Automot Safety & Energy, Beijing 100084, Peoples R China
关键词
Heuristic algorithms; Deep reinforcement learning; Autonomous vehicles; Training; Delays; Transfer learning; Q-learning; Optimization; Merging; Game theory; Non-signalized intersection management; multi-agent deep reinforcement learning; zero-shot generalization; communication latency;
D O I
10.1109/TITS.2024.3407760
中图分类号
TU [建筑科学];
学科分类号
0813 ;
摘要
One typical application of connected and automated vehicles (CAVs) is to coordinate multiple CAVs at a non-signalized intersection in mixed traffic, and it may take advantage of multi-agent deep reinforcement learning (MDRL) approaches to improve the overall coordination efficiency. This study proposes a heuristic-based MDRL algorithm (H-QMIX) developed based on a value-based MDRL algorithm, QMIX. This algorithm incorporates a heuristic-based action mask module to guide CAVs efficiently and safely through intersections, composed of a stimulative passing sequence and safety restrictions on CAVs' action space in the junction area. Compared with other MDRL algorithms (e.g., IPPO, QMIX), the H-QMIX algorithm demonstrates improved training performance in terms of safety and efficiency in two case studies, where the first requires all CAVs to affix their routes, and another allows CAVs to choose random routes. Concerning the model's generalization ability, the trained models with the maximal episodic return are then transferred to a more practical scenario with a certain vehicle-to-vehicle (V2V) communication delay in a zero-shot manner. The simulation results illustrate that H-QMIX is robust to a certain communication delay. The code for this paper is available at: https://github.com/flammingRaven/heuristic_based_qmix.
引用
收藏
页码:16235 / 16248
页数:14
相关论文
共 50 条
  • [21] Multi-Agent Deep Reinforcement Learning for content caching within the Internet of Vehicles
    Knari, Anas
    Derfouf, Mostapha
    Koulali, Mohammed-Amine
    Khoumsi, Ahmed
    AD HOC NETWORKS, 2024, 152
  • [22] Deep Reinforcement Learning Based Left-Turn Connected and Automated Vehicle Control at Signalized Intersection in Vehicle-to-Infrastructure Environment
    Chen, Juan
    Xue, Zhengxuan
    Fan, Daiqian
    INFORMATION, 2020, 11 (02)
  • [23] Distributed Deep Multi-Agent Reinforcement Learning for Cooperative Edge Caching in Internet-of-Vehicles
    Zhou, Huan
    Jiang, Kai
    He, Shibo
    Min, Geyong
    Wu, Jie
    IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, 2023, 22 (12) : 9595 - 9609
  • [24] Formation Control of Multi-agent Based on Deep Reinforcement Learning
    Pan, Chao
    Nian, Xiaohong
    Dai, Xunhua
    Wang, Haibo
    Xiong, Hongyun
    PROCEEDINGS OF 2022 INTERNATIONAL CONFERENCE ON AUTONOMOUS UNMANNED SYSTEMS, ICAUS 2022, 2023, 1010 : 1149 - 1159
  • [25] Communicate with Traffic Lights and Vehicles Based on Multi-Agent Reinforcement Learning
    Wu, Qiang
    Zhi, Peng
    Wei, Yongqiang
    Zhang, Liang
    Wu, Jianqing
    Zhou, Qingguo
    Zhou, Qiang
    Gao, Pengfei
    PROCEEDINGS OF THE 2021 IEEE 24TH INTERNATIONAL CONFERENCE ON COMPUTER SUPPORTED COOPERATIVE WORK IN DESIGN (CSCWD), 2021, : 843 - 848
  • [26] Multi-Agent Deep Reinforcement Learning-Based Resource Allocation for Cognitive Radio Networks
    Mei, Ruru
    Wang, Zhugang
    IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, 2025, 74 (03) : 4744 - 4757
  • [27] Multi-Agent Deep Reinforcement Learning Based Downlink Beamforming in Heterogeneous Networks
    Zhang, Zitian
    Hou, Jinbo
    Chu, Xiaoli
    Zhou, Haibo
    Wei, Guiyi
    Zhang, Jie
    IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, 2023, 22 (06) : 4247 - 4263
  • [28] An Incremental Approach for Multi-Agent Deep Reinforcement Learning for Multicriteria Missions
    Cysne, Nicholas Scharan
    Ribeiro, Carlos Henrique Costa
    Ghedini, Cinara Guellner
    2023 EUROPEAN CONTROL CONFERENCE, ECC, 2023,
  • [29] Multi-agent deep reinforcement learning approach for EV charging scheduling in a smart grid
    Park, Keonwoo
    Moon, Ilkyeong
    APPLIED ENERGY, 2022, 328
  • [30] Dynamic power allocation in IIoT based on multi-agent deep reinforcement learning
    Li, Fenglei
    Liu, Zhixin
    Zhang, Xinzhe
    Yang, Yi
    NEUROCOMPUTING, 2022, 505 : 10 - 18